chore: Support embedding params from metadata for Vector Store (#3811)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 6s
Test External API and Providers / test-external (venv) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
UI Tests / ui-tests (22) (push) Successful in 42s
Pre-commit / pre-commit (push) Successful in 1m34s

# What does this PR do?
Support reading embedding model and dimensions from metadata for vector
store

## Test Plan
Unit Tests
This commit is contained in:
slekkala1 2025-10-15 06:53:36 -07:00 committed by GitHub
parent ef4bc70bbe
commit ce8ea2f505
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 256 additions and 6 deletions

View file

@ -1454,3 +1454,52 @@ def test_openai_vector_store_file_batch_error_handling(
vector_store_id="non_existent_vector_store",
file_ids=["any_file_id"],
)
def test_openai_vector_store_embedding_config_from_metadata(
compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension
):
"""Test that embedding configuration works from metadata source."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = compat_client_with_empty_stores
# Test 1: Create vector store with embedding config in metadata only
vector_store_metadata = client.vector_stores.create(
name="metadata_config_store",
metadata={
"embedding_model": embedding_model_id,
"embedding_dimension": str(embedding_dimension),
"test_source": "metadata",
},
)
assert vector_store_metadata is not None
assert vector_store_metadata.name == "metadata_config_store"
assert vector_store_metadata.status in ["completed", "in_progress"]
assert vector_store_metadata.metadata["test_source"] == "metadata"
# Test 2: Create vector store with consistent config in both sources
vector_store_consistent = client.vector_stores.create(
name="consistent_config_store",
metadata={
"embedding_model": embedding_model_id,
"embedding_dimension": str(embedding_dimension),
"test_source": "consistent",
},
extra_body={
"embedding_model": embedding_model_id,
"embedding_dimension": int(embedding_dimension), # Ensure same type/value
},
)
assert vector_store_consistent is not None
assert vector_store_consistent.name == "consistent_config_store"
assert vector_store_consistent.status in ["completed", "in_progress"]
assert vector_store_consistent.metadata["test_source"] == "consistent"
# Verify both vector stores can be listed
response = client.vector_stores.list()
store_names = [store.name for store in response.data]
assert "metadata_config_store" in store_names
assert "consistent_config_store" in store_names