fix(mypy): resolve provider utility and testing type issues (#3935)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 2s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 3s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 7s
UI Tests / ui-tests (22) (push) Successful in 51s
Pre-commit / pre-commit (push) Successful in 2m0s

Fixes mypy type errors in provider utilities and testing infrastructure:
- `mcp.py`: Cast incompatible client types, wrap image data properly
- `batches.py`: Rename walrus variable to avoid shadowing
- `api_recorder.py`: Use cast for Pydantic field annotation

No functional changes.

---------

Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
Ashwin Bharambe 2025-10-28 10:37:27 -07:00 committed by GitHub
parent fcf07790c8
commit d009dc29f7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 33 additions and 25 deletions

View file

@ -68,8 +68,9 @@ def get_all_api_routes(
else:
http_method = hdrs.METH_POST
routes.append(
(Route(path=path, methods=[http_method], name=name, endpoint=None), webmethod)
) # setting endpoint to None since don't use a Router object
# setting endpoint to None since don't use a Router object
(Route(path=path, methods=[http_method], name=name, endpoint=None), webmethod) # type: ignore[arg-type]
)
apis[api] = routes
@ -98,7 +99,7 @@ def initialize_route_impls(impls, external_apis: dict[Api, ExternalApiSpec] | No
impl = impls[api]
func = getattr(impl, route.name)
# Get the first (and typically only) method from the set, filtering out HEAD
available_methods = [m for m in route.methods if m != "HEAD"]
available_methods = [m for m in (route.methods or []) if m != "HEAD"]
if not available_methods:
continue # Skip if only HEAD method is available
method = available_methods[0].lower()

View file

@ -141,7 +141,7 @@ def build_encoder_attention_mask(
"""
Build vision encoder attention mask that omits padding tokens.
"""
masks_list = []
masks_list: list[torch.Tensor] = []
for arx in ar:
mask_i = torch.ones((num_chunks, x.shape[2], 1), dtype=x.dtype)
mask_i[: arx[0] * arx[1], :ntok] = 0

View file

@ -358,11 +358,10 @@ class ReferenceBatchesImpl(Batches):
# TODO(SECURITY): do something about large files
file_content_response = await self.files_api.openai_retrieve_file_content(batch.input_file_id)
# Handle both bytes and memoryview types
body = file_content_response.body
if isinstance(body, memoryview):
body = bytes(body)
file_content = body.decode("utf-8")
# Handle both bytes and memoryview types - convert to bytes unconditionally
# (bytes(x) returns x if already bytes, creates new bytes from memoryview otherwise)
body_bytes = bytes(file_content_response.body)
file_content = body_bytes.decode("utf-8")
for line_num, line in enumerate(file_content.strip().split("\n"), 1):
if line.strip(): # skip empty lines
try:
@ -419,8 +418,8 @@ class ReferenceBatchesImpl(Batches):
)
valid = False
if (body := request.get("body")) and isinstance(body, dict):
if body.get("stream", False):
if (request_body := request.get("body")) and isinstance(request_body, dict):
if request_body.get("stream", False):
errors.append(
BatchError(
code="streaming_unsupported",
@ -451,7 +450,7 @@ class ReferenceBatchesImpl(Batches):
]
for param, expected_type, type_string in required_params:
if param not in body:
if param not in request_body:
errors.append(
BatchError(
code="invalid_request",
@ -461,7 +460,7 @@ class ReferenceBatchesImpl(Batches):
)
)
valid = False
elif not isinstance(body[param], expected_type):
elif not isinstance(request_body[param], expected_type):
errors.append(
BatchError(
code="invalid_request",
@ -472,15 +471,15 @@ class ReferenceBatchesImpl(Batches):
)
valid = False
if "model" in body and isinstance(body["model"], str):
if "model" in request_body and isinstance(request_body["model"], str):
try:
await self.models_api.get_model(body["model"])
await self.models_api.get_model(request_body["model"])
except Exception:
errors.append(
BatchError(
code="model_not_found",
line=line_num,
message=f"Model '{body['model']}' does not exist or is not supported",
message=f"Model '{request_body['model']}' does not exist or is not supported",
param="body.model",
)
)
@ -488,14 +487,14 @@ class ReferenceBatchesImpl(Batches):
if valid:
assert isinstance(url, str), "URL must be a string" # for mypy
assert isinstance(body, dict), "Body must be a dictionary" # for mypy
assert isinstance(request_body, dict), "Body must be a dictionary" # for mypy
requests.append(
BatchRequest(
line_num=line_num,
url=url,
method=request["method"],
custom_id=request["custom_id"],
body=body,
body=request_body,
),
)
except json.JSONDecodeError:

View file

@ -6,6 +6,7 @@
from collections.abc import Iterable
from typing import Any, cast
from together import AsyncTogether
from together.constants import BASE_URL
@ -81,10 +82,11 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
if params.dimensions is not None:
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
# Cast encoding_format to match OpenAI SDK's expected Literal type
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=params.encoding_format,
encoding_format=cast(Any, params.encoding_format),
)
response.model = (
@ -97,6 +99,8 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
logger.warning(
f"Together's embedding endpoint for {params.model} did not return usage information, substituting -1s."
)
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
# Cast to allow monkey-patching the response object
response.usage = cast(Any, OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1))
return response # type: ignore[no-any-return]
# Together's CreateEmbeddingResponse is compatible with OpenAIEmbeddingsResponse after monkey-patching
return cast(OpenAIEmbeddingsResponse, response)

View file

@ -15,7 +15,7 @@ from mcp import types as mcp_types
from mcp.client.sse import sse_client
from mcp.client.streamable_http import streamablehttp_client
from llama_stack.apis.common.content_types import ImageContentItem, InterleavedContentItem, TextContentItem
from llama_stack.apis.common.content_types import ImageContentItem, InterleavedContentItem, TextContentItem, _URLOrData
from llama_stack.apis.tools import (
ListToolDefsResponse,
ToolDef,
@ -49,7 +49,9 @@ async def client_wrapper(endpoint: str, headers: dict[str, str]) -> AsyncGenerat
try:
client = streamablehttp_client
if strategy == MCPProtol.SSE:
client = sse_client
# sse_client and streamablehttp_client have different signatures, but both
# are called the same way here, so we cast to Any to avoid type errors
client = cast(Any, sse_client)
async with client(endpoint, headers=headers) as client_streams:
async with ClientSession(read_stream=client_streams[0], write_stream=client_streams[1]) as session:
await session.initialize()
@ -137,7 +139,7 @@ async def invoke_mcp_tool(
if isinstance(item, mcp_types.TextContent):
content.append(TextContentItem(text=item.text))
elif isinstance(item, mcp_types.ImageContent):
content.append(ImageContentItem(image=item.data))
content.append(ImageContentItem(image=_URLOrData(data=item.data)))
elif isinstance(item, mcp_types.EmbeddedResource):
logger.warning(f"EmbeddedResource is not supported: {item}")
else:

View file

@ -40,7 +40,9 @@ from openai.types.completion_choice import CompletionChoice
from llama_stack.core.testing_context import get_test_context, is_debug_mode
# update the "finish_reason" field, since its type definition is wrong (no None is accepted)
CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None
CompletionChoice.model_fields["finish_reason"].annotation = cast(
type[Any] | None, Literal["stop", "length", "content_filter"] | None
)
CompletionChoice.model_rebuild()
REPO_ROOT = Path(__file__).parent.parent.parent.parent