mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
chore: Updating documentation, adding exception handling for Vector Stores in RAG Tool, more tests on migration, and migrate off of inference_api for context_retriever for RAG (#3367)
# What does this PR do? - Updating documentation on migration from RAG Tool to Vector Stores and Files APIs - Adding exception handling for Vector Stores in RAG Tool - Add more tests on migration from RAG Tool to Vector Stores - Migrate off of inference_api for context_retriever for RAG <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan Integration and unit tests added Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
f31bcc11bc
commit
d15368a302
5 changed files with 355 additions and 45 deletions
|
@ -183,6 +183,110 @@ def test_vector_db_insert_from_url_and_query(
|
|||
assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)
|
||||
|
||||
|
||||
def test_rag_tool_openai_apis(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
vector_db_id = "test_openai_vector_db"
|
||||
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
actual_vector_db_id = available_vector_dbs[0]
|
||||
|
||||
# different document formats that should work with OpenAI APIs
|
||||
documents = [
|
||||
Document(
|
||||
document_id="text-doc",
|
||||
content="This is a plain text document about machine learning algorithms.",
|
||||
metadata={"type": "text", "category": "AI"},
|
||||
),
|
||||
Document(
|
||||
document_id="url-doc",
|
||||
content="https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst",
|
||||
mime_type="text/plain",
|
||||
metadata={"type": "url", "source": "pytorch"},
|
||||
),
|
||||
Document(
|
||||
document_id="data-url-doc",
|
||||
content="data:text/plain;base64,VGhpcyBpcyBhIGRhdGEgVVJMIGRvY3VtZW50IGFib3V0IGRlZXAgbGVhcm5pbmcu", # "This is a data URL document about deep learning."
|
||||
metadata={"type": "data_url", "encoding": "base64"},
|
||||
),
|
||||
]
|
||||
|
||||
client_with_empty_registry.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunk_size_in_tokens=256,
|
||||
)
|
||||
|
||||
files_list = client_with_empty_registry.files.list()
|
||||
assert len(files_list.data) >= len(documents), (
|
||||
f"Expected at least {len(documents)} files, got {len(files_list.data)}"
|
||||
)
|
||||
|
||||
vector_store_files = client_with_empty_registry.vector_io.openai_list_files_in_vector_store(
|
||||
vector_store_id=actual_vector_db_id
|
||||
)
|
||||
assert len(vector_store_files.data) >= len(documents), f"Expected at least {len(documents)} files in vector store"
|
||||
|
||||
response = client_with_empty_registry.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[actual_vector_db_id],
|
||||
content="Tell me about machine learning and deep learning",
|
||||
)
|
||||
|
||||
assert_valid_text_response(response)
|
||||
content_text = " ".join([chunk.text for chunk in response.content]).lower()
|
||||
assert "machine learning" in content_text or "deep learning" in content_text
|
||||
|
||||
|
||||
def test_rag_tool_exception_handling(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
vector_db_id = "test_exception_handling"
|
||||
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
actual_vector_db_id = available_vector_dbs[0]
|
||||
|
||||
documents = [
|
||||
Document(
|
||||
document_id="valid-doc",
|
||||
content="This is a valid document that should be processed successfully.",
|
||||
metadata={"status": "valid"},
|
||||
),
|
||||
Document(
|
||||
document_id="invalid-url-doc",
|
||||
content="https://nonexistent-domain-12345.com/invalid.txt",
|
||||
metadata={"status": "invalid_url"},
|
||||
),
|
||||
Document(
|
||||
document_id="another-valid-doc",
|
||||
content="This is another valid document for testing resilience.",
|
||||
metadata={"status": "valid"},
|
||||
),
|
||||
]
|
||||
|
||||
client_with_empty_registry.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunk_size_in_tokens=256,
|
||||
)
|
||||
|
||||
response = client_with_empty_registry.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[actual_vector_db_id],
|
||||
content="valid document",
|
||||
)
|
||||
|
||||
assert_valid_text_response(response)
|
||||
content_text = " ".join([chunk.text for chunk in response.content]).lower()
|
||||
assert "valid document" in content_text
|
||||
|
||||
|
||||
def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"]
|
||||
assert len(providers) > 0
|
||||
|
@ -249,3 +353,107 @@ def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_i
|
|||
"chunk_template": "This should raise a ValueError because it is missing the proper template variables",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def test_rag_tool_query_generation(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
vector_db_id = "test_query_generation_db"
|
||||
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
actual_vector_db_id = available_vector_dbs[0]
|
||||
|
||||
documents = [
|
||||
Document(
|
||||
document_id="ai-doc",
|
||||
content="Artificial intelligence and machine learning are transforming technology.",
|
||||
metadata={"category": "AI"},
|
||||
),
|
||||
Document(
|
||||
document_id="banana-doc",
|
||||
content="Don't bring a banana to a knife fight.",
|
||||
metadata={"category": "wisdom"},
|
||||
),
|
||||
]
|
||||
|
||||
client_with_empty_registry.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunk_size_in_tokens=256,
|
||||
)
|
||||
|
||||
response = client_with_empty_registry.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[actual_vector_db_id],
|
||||
content="Tell me about AI",
|
||||
)
|
||||
|
||||
assert_valid_text_response(response)
|
||||
content_text = " ".join([chunk.text for chunk in response.content]).lower()
|
||||
assert "artificial intelligence" in content_text or "machine learning" in content_text
|
||||
|
||||
|
||||
def test_rag_tool_pdf_data_url_handling(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
vector_db_id = "test_pdf_data_url_db"
|
||||
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
|
||||
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
|
||||
actual_vector_db_id = available_vector_dbs[0]
|
||||
|
||||
sample_pdf = b"%PDF-1.3\n3 0 obj\n<</Type /Page\n/Parent 1 0 R\n/Resources 2 0 R\n/Contents 4 0 R>>\nendobj\n4 0 obj\n<</Filter /FlateDecode /Length 115>>\nstream\nx\x9c\x15\xcc1\x0e\x820\x18@\xe1\x9dS\xbcM]jk$\xd5\xd5(\x83!\x86\xa1\x17\xf8\xa3\xa5`LIh+\xd7W\xc6\xf7\r\xef\xc0\xbd\xd2\xaa\xb6,\xd5\xc5\xb1o\x0c\xa6VZ\xe3znn%\xf3o\xab\xb1\xe7\xa3:Y\xdc\x8bm\xeb\xf3&1\xc8\xd7\xd3\x97\xc82\xe6\x81\x87\xe42\xcb\x87Vb(\x12<\xdd<=}Jc\x0cL\x91\xee\xda$\xb5\xc3\xbd\xd7\xe9\x0f\x8d\x97 $\nendstream\nendobj\n1 0 obj\n<</Type /Pages\n/Kids [3 0 R ]\n/Count 1\n/MediaBox [0 0 595.28 841.89]\n>>\nendobj\n5 0 obj\n<</Type /Font\n/BaseFont /Helvetica\n/Subtype /Type1\n/Encoding /WinAnsiEncoding\n>>\nendobj\n2 0 obj\n<<\n/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]\n/Font <<\n/F1 5 0 R\n>>\n/XObject <<\n>>\n>>\nendobj\n6 0 obj\n<<\n/Producer (PyFPDF 1.7.2 http://pyfpdf.googlecode.com/)\n/Title (This is a sample title.)\n/Author (Llama Stack Developers)\n/CreationDate (D:20250312165548)\n>>\nendobj\n7 0 obj\n<<\n/Type /Catalog\n/Pages 1 0 R\n/OpenAction [3 0 R /FitH null]\n/PageLayout /OneColumn\n>>\nendobj\nxref\n0 8\n0000000000 65535 f \n0000000272 00000 n \n0000000455 00000 n \n0000000009 00000 n \n0000000087 00000 n \n0000000359 00000 n \n0000000559 00000 n \n0000000734 00000 n \ntrailer\n<<\n/Size 8\n/Root 7 0 R\n/Info 6 0 R\n>>\nstartxref\n837\n%%EOF\n"
|
||||
|
||||
import base64
|
||||
|
||||
pdf_base64 = base64.b64encode(sample_pdf).decode("utf-8")
|
||||
pdf_data_url = f"data:application/pdf;base64,{pdf_base64}"
|
||||
|
||||
documents = [
|
||||
Document(
|
||||
document_id="test-pdf-data-url",
|
||||
content=pdf_data_url,
|
||||
metadata={"type": "pdf", "source": "data_url"},
|
||||
),
|
||||
]
|
||||
|
||||
client_with_empty_registry.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=actual_vector_db_id,
|
||||
chunk_size_in_tokens=256,
|
||||
)
|
||||
|
||||
files_list = client_with_empty_registry.files.list()
|
||||
assert len(files_list.data) >= 1, "PDF should have been uploaded to Files API"
|
||||
|
||||
pdf_file = None
|
||||
for file in files_list.data:
|
||||
if file.filename and "test-pdf-data-url" in file.filename:
|
||||
pdf_file = file
|
||||
break
|
||||
|
||||
assert pdf_file is not None, "PDF file should be found in Files API"
|
||||
assert pdf_file.bytes == len(sample_pdf), f"File size should match original PDF ({len(sample_pdf)} bytes)"
|
||||
|
||||
file_content = client_with_empty_registry.files.retrieve_content(pdf_file.id)
|
||||
assert file_content.startswith(b"%PDF-"), "Retrieved file should be a valid PDF"
|
||||
|
||||
vector_store_files = client_with_empty_registry.vector_io.openai_list_files_in_vector_store(
|
||||
vector_store_id=actual_vector_db_id
|
||||
)
|
||||
assert len(vector_store_files.data) >= 1, "PDF should be attached to vector store"
|
||||
|
||||
response = client_with_empty_registry.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[actual_vector_db_id],
|
||||
content="sample title",
|
||||
)
|
||||
|
||||
assert_valid_text_response(response)
|
||||
content_text = " ".join([chunk.text for chunk in response.content]).lower()
|
||||
assert "sample title" in content_text or "title" in content_text
|
||||
|
|
|
@ -178,3 +178,41 @@ def test_content_from_data_and_mime_type_both_encodings_fail():
|
|||
# Should raise an exception instead of returning empty string
|
||||
with pytest.raises(UnicodeDecodeError):
|
||||
content_from_data_and_mime_type(data, mime_type)
|
||||
|
||||
|
||||
async def test_memory_tool_error_handling():
|
||||
"""Test that memory tool handles various failures gracefully without crashing."""
|
||||
from llama_stack.providers.inline.tool_runtime.rag.config import RagToolRuntimeConfig
|
||||
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
||||
|
||||
config = RagToolRuntimeConfig()
|
||||
memory_tool = MemoryToolRuntimeImpl(
|
||||
config=config,
|
||||
vector_io_api=AsyncMock(),
|
||||
inference_api=AsyncMock(),
|
||||
files_api=AsyncMock(),
|
||||
)
|
||||
|
||||
docs = [
|
||||
RAGDocument(document_id="good_doc", content="Good content", metadata={}),
|
||||
RAGDocument(document_id="bad_url_doc", content=URL(uri="https://bad.url"), metadata={}),
|
||||
RAGDocument(document_id="another_good_doc", content="Another good content", metadata={}),
|
||||
]
|
||||
|
||||
mock_file1 = MagicMock()
|
||||
mock_file1.id = "file_good1"
|
||||
mock_file2 = MagicMock()
|
||||
mock_file2.id = "file_good2"
|
||||
memory_tool.files_api.openai_upload_file.side_effect = [mock_file1, mock_file2]
|
||||
|
||||
with patch("httpx.AsyncClient") as mock_client:
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.side_effect = Exception("Bad URL")
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
|
||||
# won't raise exception despite one document failing
|
||||
await memory_tool.insert(docs, "vector_store_123")
|
||||
|
||||
# processed 2 documents successfully, skipped 1
|
||||
assert memory_tool.files_api.openai_upload_file.call_count == 2
|
||||
assert memory_tool.vector_io_api.openai_attach_file_to_vector_store.call_count == 2
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue