mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
llama-toolchain -> llama-stack (hyphens)
This commit is contained in:
parent
6665d31cdf
commit
d1959e6889
9 changed files with 17 additions and 17 deletions
|
@ -1,6 +1,6 @@
|
|||
# llama-stack
|
||||
|
||||
[](https://pypi.org/project/llama-toolchain/)
|
||||
[](https://pypi.org/project/llama-stack/)
|
||||
[](https://discord.gg/TZAAYNVtrU)
|
||||
|
||||
This repository contains the specifications and implementations of the APIs which are part of the Llama Stack.
|
||||
|
@ -42,7 +42,7 @@ A Distribution is where APIs and Providers are assembled together to provide a c
|
|||
|
||||
## Installation
|
||||
|
||||
You can install this repository as a [package](https://pypi.org/project/llama-toolchain/) with `pip install llama-toolchain`
|
||||
You can install this repository as a [package](https://pypi.org/project/llama-stack/) with `pip install llama-stack`
|
||||
|
||||
If you want to install from source:
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Llama CLI Reference
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-toolchain` package.
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
### Subcommands
|
||||
1. `download`: `llama` cli tools supports downloading the model from Meta or HuggingFace.
|
||||
|
@ -480,7 +480,7 @@ This server is running a Llama model locally.
|
|||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-toolchain pip package will work
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Getting Started
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-toolchain` package.
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
This guides allows you to quickly get started with building and running a Llama Stack server in < 5 minutes!
|
||||
|
||||
|
@ -294,7 +294,7 @@ This server is running a Llama model locally.
|
|||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-toolchain pip package will work
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
|
|
@ -106,7 +106,7 @@ def _hf_download(
|
|||
local_dir=output_dir,
|
||||
ignore_patterns=ignore_patterns,
|
||||
token=hf_token,
|
||||
library_name="llama-toolchain",
|
||||
library_name="llama-stack",
|
||||
)
|
||||
except GatedRepoError:
|
||||
parser.error(
|
||||
|
|
|
@ -11,7 +11,7 @@ LLAMA_TOOLCHAIN_DIR=${LLAMA_TOOLCHAIN_DIR:-}
|
|||
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
|
||||
|
||||
if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
|
||||
echo "Using llama-toolchain-dir=$LLAMA_TOOLCHAIN_DIR"
|
||||
echo "Using llama-stack-dir=$LLAMA_TOOLCHAIN_DIR"
|
||||
fi
|
||||
if [ -n "$LLAMA_MODELS_DIR" ]; then
|
||||
echo "Using llama-models-dir=$LLAMA_MODELS_DIR"
|
||||
|
@ -78,9 +78,9 @@ ensure_conda_env_python310() {
|
|||
if [ -n "$TEST_PYPI_VERSION" ]; then
|
||||
# these packages are damaged in test-pypi, so install them first
|
||||
pip install fastapi libcst
|
||||
pip install --extra-index-url https://test.pypi.org/simple/ llama-models==$TEST_PYPI_VERSION llama-toolchain==$TEST_PYPI_VERSION $pip_dependencies
|
||||
pip install --extra-index-url https://test.pypi.org/simple/ llama-models==$TEST_PYPI_VERSION llama-stack==$TEST_PYPI_VERSION $pip_dependencies
|
||||
else
|
||||
# Re-installing llama-toolchain in the new conda environment
|
||||
# Re-installing llama-stack in the new conda environment
|
||||
if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
|
||||
if [ ! -d "$LLAMA_TOOLCHAIN_DIR" ]; then
|
||||
printf "${RED}Warning: LLAMA_TOOLCHAIN_DIR is set but directory does not exist: $LLAMA_TOOLCHAIN_DIR${NC}\n" >&2
|
||||
|
@ -90,7 +90,7 @@ ensure_conda_env_python310() {
|
|||
printf "Installing from LLAMA_TOOLCHAIN_DIR: $LLAMA_TOOLCHAIN_DIR\n"
|
||||
pip install --no-cache-dir -e "$LLAMA_TOOLCHAIN_DIR"
|
||||
else
|
||||
pip install --no-cache-dir llama-toolchain
|
||||
pip install --no-cache-dir llama-stack
|
||||
fi
|
||||
|
||||
if [ -n "$LLAMA_MODELS_DIR" ]; then
|
||||
|
|
|
@ -55,7 +55,7 @@ RUN apt-get update && apt-get install -y \
|
|||
|
||||
EOF
|
||||
|
||||
toolchain_mount="/app/llama-toolchain-source"
|
||||
toolchain_mount="/app/llama-stack-source"
|
||||
models_mount="/app/llama-models-source"
|
||||
|
||||
if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
|
||||
|
@ -65,7 +65,7 @@ if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
|
|||
fi
|
||||
add_to_docker "RUN pip install $toolchain_mount"
|
||||
else
|
||||
add_to_docker "RUN pip install llama-toolchain"
|
||||
add_to_docker "RUN pip install llama-stack"
|
||||
fi
|
||||
|
||||
if [ -n "$LLAMA_MODELS_DIR" ]; then
|
||||
|
|
|
@ -17,7 +17,7 @@ from llama_stack.apis.telemetry import Telemetry
|
|||
from .datatypes import Api, ApiEndpoint, ProviderSpec, remote_provider_spec
|
||||
|
||||
# These are the dependencies needed by the distribution server.
|
||||
# `llama-toolchain` is automatically installed by the installation script.
|
||||
# `llama-stack` is automatically installed by the installation script.
|
||||
SERVER_DEPENDENCIES = [
|
||||
"fastapi",
|
||||
"uvicorn",
|
||||
|
|
|
@ -65,7 +65,7 @@ We define the Llama Stack as a layer cake shown below.
|
|||
|
||||
|
||||
|
||||
The API is defined in the [YAML](RFC-0001-llama-stack-assets/llama-stack-spec.yaml) and [HTML](RFC-0001-llama-stack-assets/llama-stack-spec.html) files. These files were generated using the Pydantic definitions in (api/datatypes.py and api/endpoints.py) files that are in the llama-models, llama-toolchain, and llama-agentic-system repositories.
|
||||
The API is defined in the [YAML](RFC-0001-llama-stack-assets/llama-stack-spec.yaml) and [HTML](RFC-0001-llama-stack-assets/llama-stack-spec.html) files. These files were generated using the Pydantic definitions in (api/datatypes.py and api/endpoints.py) files that are in the llama-models, llama-stack, and llama-agentic-system repositories.
|
||||
|
||||
|
||||
|
||||
|
@ -75,7 +75,7 @@ The API is defined in the [YAML](RFC-0001-llama-stack-assets/llama-stack-spec.ya
|
|||
|
||||
To prove out the API, we implemented a handful of use cases to make things more concrete. The [llama-agentic-system](https://github.com/meta-llama/llama-agentic-system) repository contains [6 different examples](https://github.com/meta-llama/llama-agentic-system/tree/main/examples/scripts) ranging from very basic to a multi turn agent.
|
||||
|
||||
There is also a sample inference endpoint implementation in the [llama-toolchain](https://github.com/meta-llama/llama-toolchain/blob/main/llama_stack/inference/server.py) repository.
|
||||
There is also a sample inference endpoint implementation in the [llama-stack](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/inference/server.py) repository.
|
||||
|
||||
|
||||
## Limitations
|
||||
|
|
2
setup.py
2
setup.py
|
@ -28,7 +28,7 @@ setup(
|
|||
},
|
||||
long_description=open("README.md").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/meta-llama/llama-toolchain",
|
||||
url="https://github.com/meta-llama/llama-stack",
|
||||
packages=find_packages(),
|
||||
classifiers=[],
|
||||
python_requires=">=3.10",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue