llama-toolchain -> llama-stack (hyphens)

This commit is contained in:
Ashwin Bharambe 2024-09-16 21:33:20 -07:00
parent 6665d31cdf
commit d1959e6889
9 changed files with 17 additions and 17 deletions

View file

@ -1,6 +1,6 @@
# llama-stack # llama-stack
[![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-toolchain)](https://pypi.org/project/llama-toolchain/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-stack)](https://pypi.org/project/llama-stack/)
[![Discord](https://img.shields.io/discord/1257833999603335178)](https://discord.gg/TZAAYNVtrU) [![Discord](https://img.shields.io/discord/1257833999603335178)](https://discord.gg/TZAAYNVtrU)
This repository contains the specifications and implementations of the APIs which are part of the Llama Stack. This repository contains the specifications and implementations of the APIs which are part of the Llama Stack.
@ -42,7 +42,7 @@ A Distribution is where APIs and Providers are assembled together to provide a c
## Installation ## Installation
You can install this repository as a [package](https://pypi.org/project/llama-toolchain/) with `pip install llama-toolchain` You can install this repository as a [package](https://pypi.org/project/llama-stack/) with `pip install llama-stack`
If you want to install from source: If you want to install from source:

View file

@ -1,6 +1,6 @@
# Llama CLI Reference # Llama CLI Reference
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-toolchain` package. The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
### Subcommands ### Subcommands
1. `download`: `llama` cli tools supports downloading the model from Meta or HuggingFace. 1. `download`: `llama` cli tools supports downloading the model from Meta or HuggingFace.
@ -480,7 +480,7 @@ This server is running a Llama model locally.
Once the server is setup, we can test it with a client to see the example outputs. Once the server is setup, we can test it with a client to see the example outputs.
``` ```
cd /path/to/llama-stack cd /path/to/llama-stack
conda activate <env> # any environment containing the llama-toolchain pip package will work conda activate <env> # any environment containing the llama-stack pip package will work
python -m llama_stack.apis.inference.client localhost 5000 python -m llama_stack.apis.inference.client localhost 5000
``` ```

View file

@ -1,6 +1,6 @@
# Getting Started # Getting Started
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-toolchain` package. The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
This guides allows you to quickly get started with building and running a Llama Stack server in < 5 minutes! This guides allows you to quickly get started with building and running a Llama Stack server in < 5 minutes!
@ -294,7 +294,7 @@ This server is running a Llama model locally.
Once the server is setup, we can test it with a client to see the example outputs. Once the server is setup, we can test it with a client to see the example outputs.
``` ```
cd /path/to/llama-stack cd /path/to/llama-stack
conda activate <env> # any environment containing the llama-toolchain pip package will work conda activate <env> # any environment containing the llama-stack pip package will work
python -m llama_stack.apis.inference.client localhost 5000 python -m llama_stack.apis.inference.client localhost 5000
``` ```

View file

@ -106,7 +106,7 @@ def _hf_download(
local_dir=output_dir, local_dir=output_dir,
ignore_patterns=ignore_patterns, ignore_patterns=ignore_patterns,
token=hf_token, token=hf_token,
library_name="llama-toolchain", library_name="llama-stack",
) )
except GatedRepoError: except GatedRepoError:
parser.error( parser.error(

View file

@ -11,7 +11,7 @@ LLAMA_TOOLCHAIN_DIR=${LLAMA_TOOLCHAIN_DIR:-}
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-} TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
echo "Using llama-toolchain-dir=$LLAMA_TOOLCHAIN_DIR" echo "Using llama-stack-dir=$LLAMA_TOOLCHAIN_DIR"
fi fi
if [ -n "$LLAMA_MODELS_DIR" ]; then if [ -n "$LLAMA_MODELS_DIR" ]; then
echo "Using llama-models-dir=$LLAMA_MODELS_DIR" echo "Using llama-models-dir=$LLAMA_MODELS_DIR"
@ -78,9 +78,9 @@ ensure_conda_env_python310() {
if [ -n "$TEST_PYPI_VERSION" ]; then if [ -n "$TEST_PYPI_VERSION" ]; then
# these packages are damaged in test-pypi, so install them first # these packages are damaged in test-pypi, so install them first
pip install fastapi libcst pip install fastapi libcst
pip install --extra-index-url https://test.pypi.org/simple/ llama-models==$TEST_PYPI_VERSION llama-toolchain==$TEST_PYPI_VERSION $pip_dependencies pip install --extra-index-url https://test.pypi.org/simple/ llama-models==$TEST_PYPI_VERSION llama-stack==$TEST_PYPI_VERSION $pip_dependencies
else else
# Re-installing llama-toolchain in the new conda environment # Re-installing llama-stack in the new conda environment
if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
if [ ! -d "$LLAMA_TOOLCHAIN_DIR" ]; then if [ ! -d "$LLAMA_TOOLCHAIN_DIR" ]; then
printf "${RED}Warning: LLAMA_TOOLCHAIN_DIR is set but directory does not exist: $LLAMA_TOOLCHAIN_DIR${NC}\n" >&2 printf "${RED}Warning: LLAMA_TOOLCHAIN_DIR is set but directory does not exist: $LLAMA_TOOLCHAIN_DIR${NC}\n" >&2
@ -90,7 +90,7 @@ ensure_conda_env_python310() {
printf "Installing from LLAMA_TOOLCHAIN_DIR: $LLAMA_TOOLCHAIN_DIR\n" printf "Installing from LLAMA_TOOLCHAIN_DIR: $LLAMA_TOOLCHAIN_DIR\n"
pip install --no-cache-dir -e "$LLAMA_TOOLCHAIN_DIR" pip install --no-cache-dir -e "$LLAMA_TOOLCHAIN_DIR"
else else
pip install --no-cache-dir llama-toolchain pip install --no-cache-dir llama-stack
fi fi
if [ -n "$LLAMA_MODELS_DIR" ]; then if [ -n "$LLAMA_MODELS_DIR" ]; then

View file

@ -55,7 +55,7 @@ RUN apt-get update && apt-get install -y \
EOF EOF
toolchain_mount="/app/llama-toolchain-source" toolchain_mount="/app/llama-stack-source"
models_mount="/app/llama-models-source" models_mount="/app/llama-models-source"
if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
@ -65,7 +65,7 @@ if [ -n "$LLAMA_TOOLCHAIN_DIR" ]; then
fi fi
add_to_docker "RUN pip install $toolchain_mount" add_to_docker "RUN pip install $toolchain_mount"
else else
add_to_docker "RUN pip install llama-toolchain" add_to_docker "RUN pip install llama-stack"
fi fi
if [ -n "$LLAMA_MODELS_DIR" ]; then if [ -n "$LLAMA_MODELS_DIR" ]; then

View file

@ -17,7 +17,7 @@ from llama_stack.apis.telemetry import Telemetry
from .datatypes import Api, ApiEndpoint, ProviderSpec, remote_provider_spec from .datatypes import Api, ApiEndpoint, ProviderSpec, remote_provider_spec
# These are the dependencies needed by the distribution server. # These are the dependencies needed by the distribution server.
# `llama-toolchain` is automatically installed by the installation script. # `llama-stack` is automatically installed by the installation script.
SERVER_DEPENDENCIES = [ SERVER_DEPENDENCIES = [
"fastapi", "fastapi",
"uvicorn", "uvicorn",

View file

@ -65,7 +65,7 @@ We define the Llama Stack as a layer cake shown below.
The API is defined in the [YAML](RFC-0001-llama-stack-assets/llama-stack-spec.yaml) and [HTML](RFC-0001-llama-stack-assets/llama-stack-spec.html) files. These files were generated using the Pydantic definitions in (api/datatypes.py and api/endpoints.py) files that are in the llama-models, llama-toolchain, and llama-agentic-system repositories. The API is defined in the [YAML](RFC-0001-llama-stack-assets/llama-stack-spec.yaml) and [HTML](RFC-0001-llama-stack-assets/llama-stack-spec.html) files. These files were generated using the Pydantic definitions in (api/datatypes.py and api/endpoints.py) files that are in the llama-models, llama-stack, and llama-agentic-system repositories.
@ -75,7 +75,7 @@ The API is defined in the [YAML](RFC-0001-llama-stack-assets/llama-stack-spec.ya
To prove out the API, we implemented a handful of use cases to make things more concrete. The [llama-agentic-system](https://github.com/meta-llama/llama-agentic-system) repository contains [6 different examples](https://github.com/meta-llama/llama-agentic-system/tree/main/examples/scripts) ranging from very basic to a multi turn agent. To prove out the API, we implemented a handful of use cases to make things more concrete. The [llama-agentic-system](https://github.com/meta-llama/llama-agentic-system) repository contains [6 different examples](https://github.com/meta-llama/llama-agentic-system/tree/main/examples/scripts) ranging from very basic to a multi turn agent.
There is also a sample inference endpoint implementation in the [llama-toolchain](https://github.com/meta-llama/llama-toolchain/blob/main/llama_stack/inference/server.py) repository. There is also a sample inference endpoint implementation in the [llama-stack](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/inference/server.py) repository.
## Limitations ## Limitations

View file

@ -28,7 +28,7 @@ setup(
}, },
long_description=open("README.md").read(), long_description=open("README.md").read(),
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
url="https://github.com/meta-llama/llama-toolchain", url="https://github.com/meta-llama/llama-stack",
packages=find_packages(), packages=find_packages(),
classifiers=[], classifiers=[],
python_requires=">=3.10", python_requires=">=3.10",