mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-11 20:40:40 +00:00
fix top k, add in comments
This commit is contained in:
parent
941d5f1b18
commit
d1f67d90ca
1 changed files with 25 additions and 23 deletions
|
@ -64,9 +64,8 @@ MODEL_ALIASES = [
|
|||
]
|
||||
|
||||
|
||||
class CentMLInferenceAdapter(
|
||||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
class CentMLInferenceAdapter(ModelRegistryHelper, Inference,
|
||||
NeedsRequestProviderData):
|
||||
"""
|
||||
Adapter to use CentML's serverless inference endpoints,
|
||||
which adhere to the OpenAI chat/completions API spec,
|
||||
|
@ -138,16 +137,14 @@ class CentMLInferenceAdapter(
|
|||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
# Using the older "completions" route for non-chat
|
||||
response = self._get_client().completions.create(**params)
|
||||
return process_completion_response(response)
|
||||
|
||||
async def _stream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
async def _stream_completion(self,
|
||||
request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _to_async_generator():
|
||||
|
@ -156,9 +153,7 @@ class CentMLInferenceAdapter(
|
|||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_completion_stream_response(
|
||||
stream
|
||||
):
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
#
|
||||
|
@ -200,8 +195,7 @@ class CentMLInferenceAdapter(
|
|||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
||||
# For chat requests, if "messages" is in params -> .chat.completions
|
||||
|
@ -214,8 +208,7 @@ class CentMLInferenceAdapter(
|
|||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _to_async_generator():
|
||||
|
@ -235,22 +228,30 @@ class CentMLInferenceAdapter(
|
|||
# HELPER METHODS
|
||||
#
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest,
|
||||
CompletionRequest]) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_openai_dict(m)
|
||||
for m in request.messages
|
||||
]
|
||||
else:
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
||||
request, llama_model)
|
||||
else:
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
|
||||
params = {
|
||||
"model": request.model,
|
||||
"model":
|
||||
request.model,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
"stream":
|
||||
request.stream,
|
||||
**self._build_options(request.sampling_params, request.logprobs, request.response_format),
|
||||
}
|
||||
logcat.debug("inference", f"params to centml: {params}")
|
||||
|
@ -267,6 +268,8 @@ class CentMLInferenceAdapter(
|
|||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
# CentML currently does not support guided decoding,
|
||||
# the following setting is currently ignored by the server.
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
|
@ -295,8 +298,7 @@ class CentMLInferenceAdapter(
|
|||
model = await self.model_store.get_model(model_id)
|
||||
# CentML does not support media for embeddings.
|
||||
assert all(not content_has_media(c) for c in contents), (
|
||||
"CentML does not support media for embeddings"
|
||||
)
|
||||
"CentML does not support media for embeddings")
|
||||
|
||||
resp = self._get_client().embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue