beef up quickstart

This commit is contained in:
Justin Lee 2024-11-04 14:56:03 -08:00
parent 2898a9bc9e
commit d200a6b002

View file

@ -1,58 +1,82 @@
# Llama Stack Quickstart Guide
# Quickstart
This guide will walk you through setting up an end-to-end workflow with Llama Stack, enabling you to perform text generation using the `Llama3.2-11B-Vision-Instruct` model. Follow these steps to get started quickly.
This guide will walk you through the steps to set up an end-to-end workflow with Llama Stack. It focuses on building a Llama Stack distribution and starting up a Llama Stack server. See our [documentation](../README.md) for more on Llama Stack's capabilities, or visit [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) for example apps.
## Table of Contents
1. [Prerequisite](#prerequisite)
2. [Installation](#installation)
3. [Download Llama Models](#download-llama-models)
4. [Build, Configure, and Run Llama Stack](#build-configure-and-run-llama-stack)
5. [Testing with `curl`](#testing-with-curl)
6. [Testing with Python](#testing-with-python)
7. [Next Steps](#next-steps)
---
## Prerequisite
Ensure you have the following installed on your system:
- **Conda**: A package, dependency, and environment management tool.
## 0. Prerequsite
Feel free to skip this step if you already have the prerequsite installed.
---
1. conda (steps to install)
2.
## Installation
The `llama` CLI tool helps you manage the Llama Stack toolchain and agent systems.
**Install via PyPI:**
```bash
pip install llama-stack
```
*After installation, the `llama` command should be available in your PATH.*
---
## Download Llama Models
Download the necessary Llama model checkpoints using the `llama` CLI:
```bash
llama download --model-id Llama3.2-11B-Vision-Instruct
```
*Follow the CLI prompts to complete the download. You may need to accept a license agreement. Obtain an instant license [here](https://www.llama.com/llama-downloads/).*
---
## Build, Configure, and Run Llama Stack
### 1. Build the Llama Stack Distribution
We will default into building a `meta-reference-gpu` distribution, however you could read more about the different distriubtion [here](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/index.html).
```bash
llama stack build --template meta-reference-gpu --image-type conda
```
## 1. Installation
### 2. Run the Llama Stack Distribution
> Launching a distribution initializes and configures the necessary APIs and Providers, enabling seamless interaction with the underlying model.
The `llama` CLI tool helps you manage the Llama toolchain & agentic systems. After installing the `llama-stack` package, the `llama` command should be available in your path.
Start the server with the configured stack:
**Install as a package**:
Install directly from [PyPI](https://pypi.org/project/llama-stack/) with:
```bash
pip install llama-stack
```
```bash
cd llama-stack/distributions/meta-reference-gpu
llama stack run ./run.yaml
```
## 2. Download Llama models:
*The server will start and listen on `http://localhost:5000` by default.*
---
```
llama download --model-id Llama3.1-8B-Instruct
```
You will have to follow the instructions in the cli to complete the download, get a instant license here: URL to license.
## Testing with `curl`
## 3. Build->Configure->Run via Conda:
For development, build a LlamaStack distribution from scratch.
After setting up the server, verify it's working by sending a `POST` request using `curl`:
**`llama stack build`**
Enter build information interactively:
```bash
llama stack build
```
**`llama stack configure`**
Run `llama stack configure <name>` using the name from the build step.
```bash
llama stack configure my-local-stack
```
**`llama stack run`**
Start the server with:
```bash
llama stack run my-local-stack
```
## 4. Testing with Client
After setup, test the server with a POST request:
```bash
curl http://localhost:5000/inference/chat_completion \
-H "Content-Type: application/json" \
@ -66,34 +90,95 @@ curl http://localhost:5000/inference/chat_completion \
}'
```
## 5. Inference
After setup, test the server with a POST request:
```bash
curl http://localhost:5000/inference/chat_completion \
-H "Content-Type: application/json" \
-d '{
"model": "Llama3.1-8B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Write me a 2-sentence poem about the moon"}
],
"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
}'
**Expected Output:**
```json
{
"completion_message": {
"role": "assistant",
"content": "The moon glows softly in the midnight sky,\nA beacon of wonder, as it catches the eye.",
"stop_reason": "out_of_tokens",
"tool_calls": []
},
"logprobs": null
}
```
---
## Testing with Python
You can also interact with the Llama Stack server using a simple Python script. Below is an example:
### 1. Install Required Python Packages
The `llama-stack-client` library offers a robust and efficient python methods for interacting with the Llama Stack server.
```bash
pip install llama-stack-client
```
### 2. Create a Python Script (`test_llama_stack.py`)
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.types import SystemMessage, UserMessage
# Initialize the client
client = LlamaStackClient(base_url="http://localhost:5000")
# Create a chat completion request
response = client.inference.chat_completion(
messages=[
SystemMessage(content="You are a helpful assistant.", role="system"),
UserMessage(content="Write me a 2-sentence poem about the moon", role="user")
],
model="Llama3.1-8B-Instruct",
)
# Print the response
print(response.completion_message.content)
```
### 3. Run the Python Script
```bash
python test_llama_stack.py
```
**Expected Output:**
```
The moon glows softly in the midnight sky,
A beacon of wonder, as it catches the eye.
```
With these steps, you should have a functional Llama Stack setup capable of generating text using the specified model. For more detailed information and advanced configurations, refer to some of our documentation below.
---
## Next Steps
- **Explore Other Guides**: Dive deeper into specific topics by following these guides:
- [Understanding Distributions](#)
- [Configure your Distro](#)
- [Doing Inference API Call and Fetching a Response from Endpoints](#)
- [Creating a Conversation Loop](#)
- [Sending Image to the Model](#)
- [Tool Calling: How to and Details](#)
- [Memory API: Show Simple In-Memory Retrieval](#)
- [Agents API: Explain Components](#)
- [Using Safety API in Conversation](#)
- [Prompt Engineering Guide](#)
- **Explore Client SDKs**: Utilize our client SDKs for various languages to integrate Llama Stack into your applications:
- [Python SDK](https://github.com/meta-llama/llama-stack-client-python)
- [Node SDK](https://github.com/meta-llama/llama-stack-client-node)
- [Swift SDK](https://github.com/meta-llama/llama-stack-client-swift)
- [Kotlin SDK](https://github.com/meta-llama/llama-stack-client-kotlin)
- **Advanced Configuration**: Learn how to customize your Llama Stack distribution by referring to the [Building a Llama Stack Distribution](./building_distro.md) guide.
- **Explore Example Apps**: Check out [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) for example applications built using Llama Stack.
Check our client SDKs for various languages: [Python](https://github.com/meta-llama/llama-stack-client-python), [Node](https://github.com/meta-llama/llama-stack-client-node), [Swift](https://github.com/meta-llama/llama-stack-client-swift), and [Kotlin](https://github.com/meta-llama/llama-stack-client-kotlin).
## Advanced Guides
For more on custom Llama Stack distributions, refer to our [Building a Llama Stack Distribution](./building_distro.md) guide.
---
## Next Steps:
check out
1.
2.