mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-23 08:33:09 +00:00
docs: provider and distro codegen migration (#3531)
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> - Updates provider and distro codegen to handle the new format - Migrates provider and distro files to the new format ## Test Plan - Manual testing <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
This commit is contained in:
parent
45da31801c
commit
d23865757f
103 changed files with 1796 additions and 423 deletions
|
@ -1,220 +0,0 @@
|
|||
# inline::sqlite-vec
|
||||
|
||||
## Description
|
||||
|
||||
|
||||
[SQLite-Vec](https://github.com/asg017/sqlite-vec) is an inline vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within an SQLite database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
||||
## Features
|
||||
|
||||
- Lightweight and easy to use
|
||||
- Fully integrated with Llama Stacks
|
||||
- Uses disk-based storage for persistence, allowing for larger vector storage
|
||||
|
||||
### Comparison to Faiss
|
||||
|
||||
The choice between Faiss and sqlite-vec should be made based on the needs of your application,
|
||||
as they have different strengths.
|
||||
|
||||
#### Choosing the Right Provider
|
||||
|
||||
Scenario | Recommended Tool | Reason
|
||||
-- |-----------------| --
|
||||
Online Analytical Processing (OLAP) | Faiss | Fast, in-memory searches
|
||||
Online Transaction Processing (OLTP) | sqlite-vec | Frequent writes and reads
|
||||
Frequent writes | sqlite-vec | Efficient disk-based storage and incremental indexing
|
||||
Large datasets | sqlite-vec | Disk-based storage for larger vector storage
|
||||
Datasets that can fit in memory, frequent reads | Faiss | Optimized for speed, indexing, and GPU acceleration
|
||||
|
||||
#### Empirical Example
|
||||
|
||||
Consider the histogram below in which 10,000 randomly generated strings were inserted
|
||||
in batches of 100 into both Faiss and sqlite-vec using `client.tool_runtime.rag_tool.insert()`.
|
||||
|
||||
```{image} ../../../../_static/providers/vector_io/write_time_comparison_sqlite-vec-faiss.png
|
||||
:alt: Comparison of SQLite-Vec and Faiss write times
|
||||
:width: 400px
|
||||
```
|
||||
|
||||
You will notice that the average write time for `sqlite-vec` was 788ms, compared to
|
||||
47,640ms for Faiss. While the number is jarring, if you look at the distribution, you can see that it is rather
|
||||
uniformly spread across the [1500, 100000] interval.
|
||||
|
||||
Looking at each individual write in the order that the documents are inserted you'll see the increase in
|
||||
write speed as Faiss reindexes the vectors after each write.
|
||||
```{image} ../../../../_static/providers/vector_io/write_time_sequence_sqlite-vec-faiss.png
|
||||
:alt: Comparison of SQLite-Vec and Faiss write times
|
||||
:width: 400px
|
||||
```
|
||||
|
||||
In comparison, the read times for Faiss was on average 10% faster than sqlite-vec.
|
||||
The modes of the two distributions highlight the differences much further where Faiss
|
||||
will likely yield faster read performance.
|
||||
|
||||
```{image} ../../../../_static/providers/vector_io/read_time_comparison_sqlite-vec-faiss.png
|
||||
:alt: Comparison of SQLite-Vec and Faiss read times
|
||||
:width: 400px
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
To use sqlite-vec in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use SQLite-Vec.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
The SQLite-vec provider supports three search modes:
|
||||
|
||||
1. **Vector Search** (`mode="vector"`): Performs pure vector similarity search using the embeddings.
|
||||
2. **Keyword Search** (`mode="keyword"`): Performs full-text search using SQLite's FTS5.
|
||||
3. **Hybrid Search** (`mode="hybrid"`): Combines both vector and keyword search for better results. First performs keyword search to get candidate matches, then applies vector similarity search on those candidates.
|
||||
|
||||
Example with hybrid search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
||||
# Using RRF ranker
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
query="your query here",
|
||||
params={
|
||||
"mode": "hybrid",
|
||||
"max_chunks": 3,
|
||||
"score_threshold": 0.7,
|
||||
"ranker": {"type": "rrf", "impact_factor": 60.0},
|
||||
},
|
||||
)
|
||||
|
||||
# Using weighted ranker
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
query="your query here",
|
||||
params={
|
||||
"mode": "hybrid",
|
||||
"max_chunks": 3,
|
||||
"score_threshold": 0.7,
|
||||
"ranker": {"type": "weighted", "alpha": 0.7}, # 70% vector, 30% keyword
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
Example with explicit vector search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
```
|
||||
|
||||
Example with keyword search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
```
|
||||
|
||||
## Supported Search Modes
|
||||
|
||||
The SQLite vector store supports three search modes:
|
||||
|
||||
1. **Vector Search** (`mode="vector"`): Uses vector similarity to find relevant chunks
|
||||
2. **Keyword Search** (`mode="keyword"`): Uses keyword matching to find relevant chunks
|
||||
3. **Hybrid Search** (`mode="hybrid"`): Combines both vector and keyword scores using a ranker
|
||||
|
||||
### Hybrid Search
|
||||
|
||||
Hybrid search combines the strengths of both vector and keyword search by:
|
||||
- Computing vector similarity scores
|
||||
- Computing keyword match scores
|
||||
- Using a ranker to combine these scores
|
||||
|
||||
Two ranker types are supported:
|
||||
|
||||
1. **RRF (Reciprocal Rank Fusion)**:
|
||||
- Combines ranks from both vector and keyword results
|
||||
- Uses an impact factor (default: 60.0) to control the weight of higher-ranked results
|
||||
- Good for balancing between vector and keyword results
|
||||
- The default impact factor of 60.0 comes from the original RRF paper by Cormack et al. (2009) [^1], which found this value to provide optimal performance across various retrieval tasks
|
||||
|
||||
2. **Weighted**:
|
||||
- Linearly combines normalized vector and keyword scores
|
||||
- Uses an alpha parameter (0-1) to control the blend:
|
||||
- alpha=0: Only use keyword scores
|
||||
- alpha=1: Only use vector scores
|
||||
- alpha=0.5: Equal weight to both (default)
|
||||
|
||||
Example using RAGQueryConfig with different search modes:
|
||||
|
||||
```python
|
||||
from llama_stack.apis.tools import RAGQueryConfig, RRFRanker, WeightedRanker
|
||||
|
||||
# Vector search
|
||||
config = RAGQueryConfig(mode="vector", max_chunks=5)
|
||||
|
||||
# Keyword search
|
||||
config = RAGQueryConfig(mode="keyword", max_chunks=5)
|
||||
|
||||
# Hybrid search with custom RRF ranker
|
||||
config = RAGQueryConfig(
|
||||
mode="hybrid",
|
||||
max_chunks=5,
|
||||
ranker=RRFRanker(impact_factor=50.0), # Custom impact factor
|
||||
)
|
||||
|
||||
# Hybrid search with weighted ranker
|
||||
config = RAGQueryConfig(
|
||||
mode="hybrid",
|
||||
max_chunks=5,
|
||||
ranker=WeightedRanker(alpha=0.7), # 70% vector, 30% keyword
|
||||
)
|
||||
|
||||
# Hybrid search with default RRF ranker
|
||||
config = RAGQueryConfig(
|
||||
mode="hybrid", max_chunks=5
|
||||
) # Will use RRF with impact_factor=60.0
|
||||
```
|
||||
|
||||
Note: The ranker configuration is only used in hybrid mode. For vector or keyword modes, the ranker parameter is ignored.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install SQLite-Vec using pip:
|
||||
|
||||
```bash
|
||||
pip install sqlite-vec
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) for more details about sqlite-vec in general.
|
||||
|
||||
[^1]: Cormack, G. V., Clarke, C. L., & Buettcher, S. (2009). [Reciprocal rank fusion outperforms condorcet and individual rank learning methods](https://dl.acm.org/doi/10.1145/1571941.1572114). In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 758-759).
|
||||
|
||||
|
||||
## Configuration
|
||||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec_registry.db
|
||||
|
||||
```
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue