chore: remove deprecated inference.chat_completion implementations (#3654)

# What does this PR do?

remove unused chat_completion implementations

vllm features ported -
 - requires max_tokens be set, use config value
 - set tool_choice to none if no tools provided


## Test Plan

ci
This commit is contained in:
Matthew Farrellee 2025-10-03 07:55:34 -04:00 committed by GitHub
parent 4dfbe46954
commit d266c59c2a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 193 additions and 1410 deletions

View file

@ -6,7 +6,6 @@
import asyncio
from collections.abc import AsyncGenerator
from typing import Any
from ollama import AsyncClient as AsyncOllamaClient
@ -18,19 +17,10 @@ from llama_stack.apis.common.content_types import (
from llama_stack.apis.common.errors import UnsupportedModelError
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
GrammarResponseFormat,
InferenceProvider,
JsonSchemaResponseFormat,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.log import get_logger
@ -46,11 +36,7 @@ from llama_stack.providers.utils.inference.model_registry import (
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
@ -161,39 +147,6 @@ class OllamaInferenceAdapter(
raise ValueError("Model store not set")
return await self.model_store.get_model(model_id)
async def chat_completion(
self,
model_id: str,
messages: list[Message],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
if model.provider_resource_id is None:
raise ValueError(f"Model {model_id} has no provider_resource_id set")
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
stream=stream,
logprobs=logprobs,
response_format=response_format,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _get_params(self, request: ChatCompletionRequest) -> dict:
sampling_options = get_sampling_options(request.sampling_params)
# This is needed since the Ollama API expects num_predict to be set
@ -233,57 +186,6 @@ class OllamaInferenceAdapter(
return params
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
if "messages" in params:
r = await self.ollama_client.chat(**params)
else:
r = await self.ollama_client.generate(**params)
if "message" in r:
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["message"]["content"],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(response, request)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
if "messages" in params:
s = await self.ollama_client.chat(**params)
else:
s = await self.ollama_client.generate(**params)
async for chunk in s:
if "message" in chunk:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["message"]["content"],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def register_model(self, model: Model) -> Model:
if await self.check_model_availability(model.provider_model_id):
return model