mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-05 04:17:32 +00:00
Merge branch 'main' into issue-3443-require_approval
This commit is contained in:
commit
d2fdc70a8d
72 changed files with 1380 additions and 1406 deletions
|
@ -694,7 +694,7 @@ class Agents(Protocol):
|
|||
#
|
||||
# Both of these APIs are inherently stateful.
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/responses/{response_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_openai_response(
|
||||
self,
|
||||
response_id: str,
|
||||
|
@ -706,7 +706,7 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/responses", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
|
@ -731,7 +731,7 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/responses", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_openai_responses(
|
||||
self,
|
||||
after: str | None = None,
|
||||
|
@ -749,7 +749,7 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}/input_items", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/responses/{response_id}/input_items", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
response_id: str,
|
||||
|
@ -771,7 +771,7 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/responses/{response_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
|
||||
"""Delete an OpenAI response by its ID.
|
||||
|
||||
|
|
|
@ -363,7 +363,6 @@ class OpenAIResponseObject(BaseModel):
|
|||
:param text: Text formatting configuration for the response
|
||||
:param top_p: (Optional) Nucleus sampling parameter used for generation
|
||||
:param truncation: (Optional) Truncation strategy applied to the response
|
||||
:param user: (Optional) User identifier associated with the request
|
||||
"""
|
||||
|
||||
created_at: int
|
||||
|
@ -381,7 +380,6 @@ class OpenAIResponseObject(BaseModel):
|
|||
text: OpenAIResponseText = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text"))
|
||||
top_p: float | None = None
|
||||
truncation: str | None = None
|
||||
user: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -43,7 +43,7 @@ class Batches(Protocol):
|
|||
Note: This API is currently under active development and may undergo changes.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/batches", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/batches", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def create_batch(
|
||||
self,
|
||||
input_file_id: str,
|
||||
|
@ -63,7 +63,7 @@ class Batches(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches/{batch_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/batches/{batch_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def retrieve_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Retrieve information about a specific batch.
|
||||
|
||||
|
@ -72,7 +72,7 @@ class Batches(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches/{batch_id}/cancel", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/batches/{batch_id}/cancel", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def cancel_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Cancel a batch that is in progress.
|
||||
|
||||
|
@ -81,7 +81,7 @@ class Batches(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/batches", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_batches(
|
||||
self,
|
||||
after: str | None = None,
|
||||
|
|
|
@ -105,14 +105,12 @@ class OpenAIFileDeleteResponse(BaseModel):
|
|||
@trace_protocol
|
||||
class Files(Protocol):
|
||||
# OpenAI Files API Endpoints
|
||||
@webmethod(route="/openai/v1/files", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/files", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_upload_file(
|
||||
self,
|
||||
file: Annotated[UploadFile, File()],
|
||||
purpose: Annotated[OpenAIFilePurpose, Form()],
|
||||
expires_after_anchor: Annotated[str | None, Form(alias="expires_after[anchor]")] = None,
|
||||
expires_after_seconds: Annotated[int | None, Form(alias="expires_after[seconds]")] = None,
|
||||
# TODO: expires_after is producing strange openapi spec, params are showing up as a required w/ oneOf being null
|
||||
expires_after: Annotated[ExpiresAfter | None, Form()] = None,
|
||||
) -> OpenAIFileObject:
|
||||
"""
|
||||
Upload a file that can be used across various endpoints.
|
||||
|
@ -120,15 +118,16 @@ class Files(Protocol):
|
|||
The file upload should be a multipart form request with:
|
||||
- file: The File object (not file name) to be uploaded.
|
||||
- purpose: The intended purpose of the uploaded file.
|
||||
- expires_after: Optional form values describing expiration for the file. Expected expires_after[anchor] = "created_at", expires_after[seconds] = {integer}. Seconds must be between 3600 and 2592000 (1 hour to 30 days).
|
||||
- expires_after: Optional form values describing expiration for the file.
|
||||
|
||||
:param file: The uploaded file object containing content and metadata (filename, content_type, etc.).
|
||||
:param purpose: The intended purpose of the uploaded file (e.g., "assistants", "fine-tune").
|
||||
:param expires_after: Optional form values describing expiration for the file.
|
||||
:returns: An OpenAIFileObject representing the uploaded file.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/files", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_files(
|
||||
self,
|
||||
after: str | None = None,
|
||||
|
@ -147,7 +146,7 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files/{file_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/files/{file_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_file(
|
||||
self,
|
||||
file_id: str,
|
||||
|
@ -160,7 +159,7 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files/{file_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/files/{file_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def openai_delete_file(
|
||||
self,
|
||||
file_id: str,
|
||||
|
@ -173,7 +172,7 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files/{file_id}/content", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/files/{file_id}/content", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_file_content(
|
||||
self,
|
||||
file_id: str,
|
||||
|
|
|
@ -17,11 +17,11 @@ from typing import (
|
|||
from pydantic import BaseModel, Field, field_validator
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent, InterleavedContentItem
|
||||
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
|
||||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.telemetry import MetricResponseMixin
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
StopReason,
|
||||
|
@ -1070,27 +1070,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/inference/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
"""Generate embeddings for content pieces using the specified model.
|
||||
|
||||
:param model_id: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
|
||||
:param contents: List of contents to generate embeddings for. Each content can be a string or an InterleavedContentItem (and hence can be multimodal). The behavior depends on the model and provider. Some models may only support text.
|
||||
:param output_dimension: (Optional) Output dimensionality for the embeddings. Only supported by Matryoshka models.
|
||||
:param text_truncation: (Optional) Config for how to truncate text for embedding when text is longer than the model's max sequence length.
|
||||
:param task_type: (Optional) How is the embedding being used? This is only supported by asymmetric embedding models.
|
||||
:returns: An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/inference/rerank", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/inference/rerank", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def rerank(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -1109,7 +1089,7 @@ class InferenceProvider(Protocol):
|
|||
raise NotImplementedError("Reranking is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/openai/v1/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
|
@ -1160,7 +1140,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -1216,7 +1196,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -1245,7 +1225,7 @@ class Inference(InferenceProvider):
|
|||
- Embedding models: these models generate embeddings to be used for semantic search.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/chat/completions", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_chat_completions(
|
||||
self,
|
||||
after: str | None = None,
|
||||
|
@ -1263,7 +1243,7 @@ class Inference(InferenceProvider):
|
|||
"""
|
||||
raise NotImplementedError("List chat completions is not implemented")
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions/{completion_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/chat/completions/{completion_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
|
||||
"""Describe a chat completion by its ID.
|
||||
|
||||
|
|
|
@ -111,14 +111,6 @@ class Models(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/models", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_models(self) -> OpenAIListModelsResponse:
|
||||
"""List models using the OpenAI API.
|
||||
|
||||
:returns: A OpenAIListModelsResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/models/{model_id:path}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_model(
|
||||
self,
|
||||
|
|
|
@ -114,7 +114,7 @@ class Safety(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/moderations", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/moderations", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
|
||||
"""Classifies if text and/or image inputs are potentially harmful.
|
||||
:param input: Input (or inputs) to classify.
|
||||
|
|
|
@ -473,7 +473,7 @@ class VectorIO(Protocol):
|
|||
...
|
||||
|
||||
# OpenAI Vector Stores API endpoints
|
||||
@webmethod(route="/openai/v1/vector_stores", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
|
@ -499,7 +499,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
|
@ -517,7 +517,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -529,7 +529,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -547,7 +547,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -559,7 +559,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/search", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}/search", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -585,7 +585,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}/files", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -603,7 +603,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}/files", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -625,9 +625,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}", method="GET", level=LLAMA_STACK_API_V1
|
||||
)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}/files/{file_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -642,7 +640,7 @@ class VectorIO(Protocol):
|
|||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content",
|
||||
route="/vector_stores/{vector_store_id}/files/{file_id}/content",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
|
@ -659,9 +657,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}", method="POST", level=LLAMA_STACK_API_V1
|
||||
)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}/files/{file_id}", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
@ -677,9 +673,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}", method="DELETE", level=LLAMA_STACK_API_V1
|
||||
)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}/files/{file_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
|
|
@ -433,6 +433,12 @@ class InferenceStoreConfig(BaseModel):
|
|||
num_writers: int = Field(default=4, description="Number of concurrent background writers")
|
||||
|
||||
|
||||
class ResponsesStoreConfig(BaseModel):
|
||||
sql_store_config: SqlStoreConfig
|
||||
max_write_queue_size: int = Field(default=10000, description="Max queued writes for responses store")
|
||||
num_writers: int = Field(default=4, description="Number of concurrent background writers")
|
||||
|
||||
|
||||
class StackRunConfig(BaseModel):
|
||||
version: int = LLAMA_STACK_RUN_CONFIG_VERSION
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ from llama_stack.apis.telemetry import Telemetry
|
|||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDBs
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.core.client import get_client_impl
|
||||
from llama_stack.core.datatypes import (
|
||||
AccessRule,
|
||||
|
@ -412,8 +413,14 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
|
|||
|
||||
mro = type(obj).__mro__
|
||||
for name, value in inspect.getmembers(protocol):
|
||||
if inspect.isfunction(value) and hasattr(value, "__webmethod__"):
|
||||
if value.__webmethod__.experimental:
|
||||
if inspect.isfunction(value) and hasattr(value, "__webmethods__"):
|
||||
has_alpha_api = False
|
||||
for webmethod in value.__webmethods__:
|
||||
if webmethod.level == LLAMA_STACK_API_V1ALPHA:
|
||||
has_alpha_api = True
|
||||
break
|
||||
# if this API has multiple webmethods, and one of them is an alpha API, this API should be skipped when checking for missing or not callable routes
|
||||
if has_alpha_api:
|
||||
continue
|
||||
if not hasattr(obj, name):
|
||||
missing_methods.append((name, "missing"))
|
||||
|
|
|
@ -16,7 +16,6 @@ from pydantic import Field, TypeAdapter
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
|
||||
from llama_stack.apis.inference import (
|
||||
|
@ -26,8 +25,6 @@ from llama_stack.apis.inference import (
|
|||
CompletionMessage,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
ListOpenAIChatCompletionResponse,
|
||||
LogProbConfig,
|
||||
|
@ -48,7 +45,6 @@ from llama_stack.apis.inference import (
|
|||
ResponseFormat,
|
||||
SamplingParams,
|
||||
StopReason,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -312,25 +308,6 @@ class InferenceRouter(Inference):
|
|||
|
||||
return response
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
logger.debug(f"InferenceRouter.embeddings: {model_id}")
|
||||
await self._get_model(model_id, ModelType.embedding)
|
||||
provider = await self.routing_table.get_provider_impl(model_id)
|
||||
return await provider.embeddings(
|
||||
model_id=model_id,
|
||||
contents=contents,
|
||||
text_truncation=text_truncation,
|
||||
output_dimension=output_dimension,
|
||||
task_type=task_type,
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -924,7 +924,7 @@ async def get_raw_document_text(document: Document) -> str:
|
|||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
elif not (document.mime_type.startswith("text/") or document.mime_type == "application/yaml"):
|
||||
elif not (document.mime_type.startswith("text/") or document.mime_type in ("application/yaml", "application/json")):
|
||||
raise ValueError(f"Unexpected document mime type: {document.mime_type}")
|
||||
|
||||
if isinstance(document.content, URL):
|
||||
|
|
|
@ -52,6 +52,36 @@ from .utils import convert_chat_choice_to_response_message, is_function_tool_cal
|
|||
logger = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
def convert_tooldef_to_chat_tool(tool_def):
|
||||
"""Convert a ToolDef to OpenAI ChatCompletionToolParam format.
|
||||
|
||||
Args:
|
||||
tool_def: ToolDef from the tools API
|
||||
|
||||
Returns:
|
||||
ChatCompletionToolParam suitable for OpenAI chat completion
|
||||
"""
|
||||
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
internal_tool_def = ToolDefinition(
|
||||
tool_name=tool_def.name,
|
||||
description=tool_def.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
items=param.items,
|
||||
)
|
||||
for param in tool_def.parameters
|
||||
},
|
||||
)
|
||||
return convert_tooldef_to_openai_tool(internal_tool_def)
|
||||
|
||||
|
||||
class StreamingResponseOrchestrator:
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -580,23 +610,7 @@ class StreamingResponseOrchestrator:
|
|||
continue
|
||||
if not always_allowed or t.name in always_allowed:
|
||||
# Add to chat tools for inference
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
tool_def = ToolDefinition(
|
||||
tool_name=t.name,
|
||||
description=t.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
)
|
||||
for param in t.parameters
|
||||
},
|
||||
)
|
||||
openai_tool = convert_tooldef_to_openai_tool(tool_def)
|
||||
openai_tool = convert_tooldef_to_chat_tool(t)
|
||||
if self.ctx.chat_tools is None:
|
||||
self.ctx.chat_tools = []
|
||||
self.ctx.chat_tools.append(openai_tool)
|
||||
|
|
|
@ -12,7 +12,7 @@ from llama_stack.apis.agents import Agents, StepType
|
|||
from llama_stack.apis.benchmarks import Benchmark
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference, SystemMessage, UserMessage
|
||||
from llama_stack.apis.inference import Inference, OpenAISystemMessageParam, OpenAIUserMessageParam, UserMessage
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
|
@ -159,31 +159,40 @@ class MetaReferenceEvalImpl(
|
|||
) -> list[dict[str, Any]]:
|
||||
candidate = benchmark_config.eval_candidate
|
||||
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
|
||||
sampling_params = {"max_tokens": candidate.sampling_params.max_tokens}
|
||||
|
||||
generations = []
|
||||
for x in tqdm(input_rows):
|
||||
if ColumnName.completion_input.value in x:
|
||||
if candidate.sampling_params.stop:
|
||||
sampling_params["stop"] = candidate.sampling_params.stop
|
||||
|
||||
input_content = json.loads(x[ColumnName.completion_input.value])
|
||||
response = await self.inference_api.completion(
|
||||
response = await self.inference_api.openai_completion(
|
||||
model=candidate.model,
|
||||
content=input_content,
|
||||
sampling_params=candidate.sampling_params,
|
||||
prompt=input_content,
|
||||
**sampling_params,
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
generations.append({ColumnName.generated_answer.value: response.choices[0].text})
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"]
|
||||
input_messages = [
|
||||
OpenAIUserMessageParam(**x) for x in chat_completion_input_json if x["role"] == "user"
|
||||
]
|
||||
|
||||
messages = []
|
||||
if candidate.system_message:
|
||||
messages.append(candidate.system_message)
|
||||
messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"]
|
||||
|
||||
messages += [OpenAISystemMessageParam(**x) for x in chat_completion_input_json if x["role"] == "system"]
|
||||
|
||||
messages += input_messages
|
||||
response = await self.inference_api.chat_completion(
|
||||
model_id=candidate.model,
|
||||
response = await self.inference_api.openai_chat_completion(
|
||||
model=candidate.model,
|
||||
messages=messages,
|
||||
sampling_params=candidate.sampling_params,
|
||||
**sampling_params,
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
generations.append({ColumnName.generated_answer.value: response.choices[0].message.content})
|
||||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
||||
|
|
|
@ -14,6 +14,7 @@ from fastapi import File, Form, Response, UploadFile
|
|||
from llama_stack.apis.common.errors import ResourceNotFoundError
|
||||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.files import (
|
||||
ExpiresAfter,
|
||||
Files,
|
||||
ListOpenAIFileResponse,
|
||||
OpenAIFileDeleteResponse,
|
||||
|
@ -86,14 +87,13 @@ class LocalfsFilesImpl(Files):
|
|||
self,
|
||||
file: Annotated[UploadFile, File()],
|
||||
purpose: Annotated[OpenAIFilePurpose, Form()],
|
||||
expires_after_anchor: Annotated[str | None, Form(alias="expires_after[anchor]")] = None,
|
||||
expires_after_seconds: Annotated[int | None, Form(alias="expires_after[seconds]")] = None,
|
||||
expires_after: Annotated[ExpiresAfter | None, Form()] = None,
|
||||
) -> OpenAIFileObject:
|
||||
"""Upload a file that can be used across various endpoints."""
|
||||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
if expires_after_anchor is not None or expires_after_seconds is not None:
|
||||
if expires_after is not None:
|
||||
raise NotImplementedError("File expiration is not supported by this provider")
|
||||
|
||||
file_id = self._generate_file_id()
|
||||
|
|
|
@ -195,8 +195,7 @@ class S3FilesImpl(Files):
|
|||
self,
|
||||
file: Annotated[UploadFile, File()],
|
||||
purpose: Annotated[OpenAIFilePurpose, Form()],
|
||||
expires_after_anchor: Annotated[str | None, Form(alias="expires_after[anchor]")] = None,
|
||||
expires_after_seconds: Annotated[int | None, Form(alias="expires_after[seconds]")] = None,
|
||||
expires_after: Annotated[ExpiresAfter | None, Form()] = None,
|
||||
) -> OpenAIFileObject:
|
||||
file_id = f"file-{uuid.uuid4().hex}"
|
||||
|
||||
|
@ -204,14 +203,6 @@ class S3FilesImpl(Files):
|
|||
|
||||
created_at = self._now()
|
||||
|
||||
expires_after = None
|
||||
if expires_after_anchor is not None or expires_after_seconds is not None:
|
||||
# we use ExpiresAfter to validate input
|
||||
expires_after = ExpiresAfter(
|
||||
anchor=expires_after_anchor, # type: ignore[arg-type]
|
||||
seconds=expires_after_seconds, # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
# the default is no expiration.
|
||||
# to implement no expiration we set an expiration beyond the max.
|
||||
# we'll hide this fact from users when returning the file object.
|
||||
|
|
|
@ -11,21 +11,17 @@ from botocore.client import BaseClient
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -47,8 +43,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
@ -218,36 +212,6 @@ class BedrockInferenceAdapter(
|
|||
),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
# Convert foundation model ID to inference profile ID
|
||||
region_name = self.client.meta.region_name
|
||||
inference_profile_id = _to_inference_profile_id(model.provider_resource_id, region_name)
|
||||
|
||||
embeddings = []
|
||||
for content in contents:
|
||||
assert not content_has_media(content), "Bedrock does not support media for embeddings"
|
||||
input_text = interleaved_content_as_str(content)
|
||||
input_body = {"inputText": input_text}
|
||||
body = json.dumps(input_body)
|
||||
response = self.client.invoke_model(
|
||||
body=body,
|
||||
modelId=inference_profile_id,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
response_body = json.loads(response.get("body").read())
|
||||
embeddings.append(response_body.get("embedding"))
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -11,21 +11,17 @@ from cerebras.cloud.sdk import AsyncCerebras
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -187,16 +183,6 @@ class CerebrasInferenceAdapter(
|
|||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -11,15 +11,12 @@ from databricks.sdk import WorkspaceClient
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -27,7 +24,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAICompletion,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -118,16 +114,6 @@ class DatabricksInferenceAdapter(
|
|||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._model_cache = {} # from OpenAIMixin
|
||||
ws_client = WorkspaceClient(host=self.config.url, token=self.get_api_key()) # TODO: this is not async
|
||||
|
|
|
@ -10,22 +10,18 @@ from fireworks.client import Fireworks
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -48,8 +44,6 @@ from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -259,28 +253,3 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
|
|||
logger.debug(f"params to fireworks: {params}")
|
||||
|
||||
return params
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
kwargs = {}
|
||||
if model.metadata.get("embedding_dimension"):
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
|
||||
assert all(not content_has_media(content) for content in contents), (
|
||||
"Fireworks does not support media for embeddings"
|
||||
)
|
||||
response = self._get_client().embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
@ -39,25 +39,6 @@ client = LlamaStackAsLibraryClient("nvidia")
|
|||
client.initialize()
|
||||
```
|
||||
|
||||
### Create Completion
|
||||
|
||||
The following example shows how to create a completion for an NVIDIA NIM.
|
||||
|
||||
> [!NOTE]
|
||||
> The hosted NVIDIA Llama NIMs (for example ```meta-llama/Llama-3.1-8B-Instruct```) that have ```NVIDIA_BASE_URL="https://integrate.api.nvidia.com"``` do not support the ```completion``` method, while locally deployed NIMs do.
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
content="Complete the sentence using one word: Roses are red, violets are :",
|
||||
stream=False,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
print(f"Response: {response.content}")
|
||||
```
|
||||
|
||||
### Create Chat Completion
|
||||
|
||||
The following example shows how to create a chat completion for an NVIDIA NIM.
|
||||
|
|
|
@ -11,8 +11,6 @@ from openai import NOT_GIVEN, APIConnectionError
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
|
@ -21,8 +19,6 @@ from llama_stack.apis.inference import (
|
|||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -31,7 +27,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAIEmbeddingUsage,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
)
|
||||
|
@ -156,60 +151,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
|||
# we pass n=1 to get only one completion
|
||||
return convert_openai_completion_choice(response.choices[0])
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
if any(content_has_media(content) for content in contents):
|
||||
raise NotImplementedError("Media is not supported")
|
||||
|
||||
#
|
||||
# Llama Stack: contents = list[str] | list[InterleavedContentItem]
|
||||
# ->
|
||||
# OpenAI: input = str | list[str]
|
||||
#
|
||||
# we can ignore str and always pass list[str] to OpenAI
|
||||
#
|
||||
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
||||
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
|
||||
extra_body = {}
|
||||
|
||||
if text_truncation is not None:
|
||||
text_truncation_options = {
|
||||
TextTruncation.none: "NONE",
|
||||
TextTruncation.end: "END",
|
||||
TextTruncation.start: "START",
|
||||
}
|
||||
extra_body["truncate"] = text_truncation_options[text_truncation]
|
||||
|
||||
if output_dimension is not None:
|
||||
extra_body["dimensions"] = output_dimension
|
||||
|
||||
if task_type is not None:
|
||||
task_type_options = {
|
||||
EmbeddingTaskType.document: "passage",
|
||||
EmbeddingTaskType.query: "query",
|
||||
}
|
||||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
#
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...)
|
||||
# ->
|
||||
# Llama Stack: EmbeddingsResponse(embeddings=list[list[float]])
|
||||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -14,7 +14,6 @@ from ollama import AsyncClient as AsyncOllamaClient
|
|||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.common.errors import UnsupportedModelError
|
||||
|
@ -25,8 +24,6 @@ from llama_stack.apis.inference import (
|
|||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
GrammarResponseFormat,
|
||||
InferenceProvider,
|
||||
JsonSchemaResponseFormat,
|
||||
|
@ -34,7 +31,6 @@ from llama_stack.apis.inference import (
|
|||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -66,9 +62,7 @@ from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
convert_image_content_to_url,
|
||||
interleaved_content_as_str,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -363,27 +357,6 @@ class OllamaInferenceAdapter(
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
assert all(not content_has_media(content) for content in contents), (
|
||||
"Ollama does not support media for embeddings"
|
||||
)
|
||||
response = await self.ollama_client.embed(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
)
|
||||
embeddings = response["embeddings"]
|
||||
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
if await self.check_model_availability(model.provider_model_id):
|
||||
return model
|
||||
|
|
|
@ -14,8 +14,6 @@ from llama_stack.apis.inference import (
|
|||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -27,7 +25,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -190,25 +187,6 @@ class PassthroughInferenceAdapter(Inference):
|
|||
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
|
||||
yield chunk
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[InterleavedContent],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
client = self._get_client()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
return await client.inference.embeddings(
|
||||
model_id=model.provider_resource_id,
|
||||
contents=contents,
|
||||
text_truncation=text_truncation,
|
||||
output_dimension=output_dimension,
|
||||
task_type=task_type,
|
||||
)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -136,16 +136,6 @@ class RunpodInferenceAdapter(
|
|||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -12,14 +12,11 @@ from pydantic import SecretStr
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -27,7 +24,6 @@ from llama_stack.apis.inference import (
|
|||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -306,16 +302,6 @@ class _HfAdapter(
|
|||
**self._build_options(request.sampling_params, request.response_format),
|
||||
)
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -12,14 +12,11 @@ from together.constants import BASE_URL
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -27,7 +24,6 @@ from llama_stack.apis.inference import (
|
|||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -50,8 +46,6 @@ from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -247,26 +241,6 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
logger.debug(f"params to together: {params}")
|
||||
return params
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
assert all(not content_has_media(content) for content in contents), (
|
||||
"Together does not support media for embeddings"
|
||||
)
|
||||
client = self._get_client()
|
||||
r = await client.embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
)
|
||||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._model_cache = {}
|
||||
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
|
||||
|
|
|
@ -16,7 +16,6 @@ from openai.types.chat.chat_completion_chunk import (
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
|
@ -31,8 +30,6 @@ from llama_stack.apis.inference import (
|
|||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
GrammarResponseFormat,
|
||||
Inference,
|
||||
JsonSchemaResponseFormat,
|
||||
|
@ -41,7 +38,6 @@ from llama_stack.apis.inference import (
|
|||
ModelStore,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -74,8 +70,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -550,27 +544,3 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
"stream": request.stream,
|
||||
**options,
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
kwargs = {}
|
||||
assert model.model_type == ModelType.embedding
|
||||
assert model.metadata.get("embedding_dimension")
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
|
||||
assert all(not content_has_media(content) for content in contents), "VLLM does not support media for embeddings"
|
||||
response = await self.client.embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
@ -11,13 +11,11 @@ from ibm_watsonx_ai.foundation_models import Model
|
|||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
GreedySamplingStrategy,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
|
@ -30,7 +28,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -265,16 +262,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
}
|
||||
return params
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError("embedding is not supported for watsonx")
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -140,13 +140,11 @@ client.models.register(
|
|||
#### 2. Inference with the fine-tuned model
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
content="Complete the sentence using one word: Roses are red, violets are ",
|
||||
response = client.completions.create(
|
||||
prompt="Complete the sentence using one word: Roses are red, violets are ",
|
||||
stream=False,
|
||||
model_id="test-example-model@v1",
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
model="test-example-model@v1",
|
||||
max_tokens=50,
|
||||
)
|
||||
print(response.content)
|
||||
print(response.choices[0].text)
|
||||
```
|
||||
|
|
|
@ -15,16 +15,11 @@ if TYPE_CHECKING:
|
|||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
InterleavedContentItem,
|
||||
ModelStore,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
TextTruncation,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
|
||||
EMBEDDING_MODELS = {}
|
||||
|
||||
|
@ -35,23 +30,6 @@ log = get_logger(name=__name__, category="providers::utils")
|
|||
class SentenceTransformerEmbeddingMixin:
|
||||
model_store: ModelStore
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embedding_model = await self._load_sentence_transformer_model(model.provider_resource_id)
|
||||
embeddings = await asyncio.to_thread(
|
||||
embedding_model.encode,
|
||||
[interleaved_content_as_str(content) for content in contents],
|
||||
show_progress_bar=False,
|
||||
)
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -11,14 +11,11 @@ import litellm
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
InferenceProvider,
|
||||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
|
@ -32,7 +29,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -50,9 +46,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
@ -269,24 +262,6 @@ class LiteLLMOpenAIMixin(
|
|||
)
|
||||
return api_key
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
response = litellm.embedding(
|
||||
model=self.get_litellm_model_name(model.provider_resource_id),
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
)
|
||||
|
||||
embeddings = [data["embedding"] for data in response["data"]]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -399,6 +374,14 @@ class LiteLLMOpenAIMixin(
|
|||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
# Add usage tracking for streaming when telemetry is active
|
||||
from llama_stack.providers.utils.telemetry.tracing import get_current_span
|
||||
|
||||
if stream and get_current_span() is not None:
|
||||
if stream_options is None:
|
||||
stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in stream_options:
|
||||
stream_options = {**stream_options, "include_usage": True}
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
|
|
|
@ -3,6 +3,9 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import asyncio
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.agents import (
|
||||
Order,
|
||||
)
|
||||
|
@ -14,24 +17,51 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectWithInput,
|
||||
)
|
||||
from llama_stack.core.datatypes import AccessRule
|
||||
from llama_stack.core.datatypes import AccessRule, ResponsesStoreConfig
|
||||
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from ..sqlstore.api import ColumnDefinition, ColumnType
|
||||
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from ..sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig, sqlstore_impl
|
||||
from ..sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig, SqlStoreType, sqlstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="responses_store")
|
||||
|
||||
|
||||
class ResponsesStore:
|
||||
def __init__(self, sql_store_config: SqlStoreConfig, policy: list[AccessRule]):
|
||||
if not sql_store_config:
|
||||
sql_store_config = SqliteSqlStoreConfig(
|
||||
def __init__(
|
||||
self,
|
||||
config: ResponsesStoreConfig | SqlStoreConfig,
|
||||
policy: list[AccessRule],
|
||||
):
|
||||
# Handle backward compatibility
|
||||
if not isinstance(config, ResponsesStoreConfig):
|
||||
# Legacy: SqlStoreConfig passed directly as config
|
||||
config = ResponsesStoreConfig(
|
||||
sql_store_config=config,
|
||||
)
|
||||
|
||||
self.config = config
|
||||
self.sql_store_config = config.sql_store_config
|
||||
if not self.sql_store_config:
|
||||
self.sql_store_config = SqliteSqlStoreConfig(
|
||||
db_path=(RUNTIME_BASE_DIR / "sqlstore.db").as_posix(),
|
||||
)
|
||||
self.sql_store = AuthorizedSqlStore(sqlstore_impl(sql_store_config), policy)
|
||||
self.sql_store = None
|
||||
self.policy = policy
|
||||
|
||||
# Disable write queue for SQLite to avoid concurrency issues
|
||||
self.enable_write_queue = self.sql_store_config.type != SqlStoreType.sqlite
|
||||
|
||||
# Async write queue and worker control
|
||||
self._queue: asyncio.Queue[tuple[OpenAIResponseObject, list[OpenAIResponseInput]]] | None = None
|
||||
self._worker_tasks: list[asyncio.Task[Any]] = []
|
||||
self._max_write_queue_size: int = config.max_write_queue_size
|
||||
self._num_writers: int = max(1, config.num_writers)
|
||||
|
||||
async def initialize(self):
|
||||
"""Create the necessary tables if they don't exist."""
|
||||
self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.sql_store_config), self.policy)
|
||||
await self.sql_store.create_table(
|
||||
"openai_responses",
|
||||
{
|
||||
|
@ -42,9 +72,68 @@ class ResponsesStore:
|
|||
},
|
||||
)
|
||||
|
||||
if self.enable_write_queue:
|
||||
self._queue = asyncio.Queue(maxsize=self._max_write_queue_size)
|
||||
for _ in range(self._num_writers):
|
||||
self._worker_tasks.append(asyncio.create_task(self._worker_loop()))
|
||||
else:
|
||||
logger.info("Write queue disabled for SQLite to avoid concurrency issues")
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if not self._worker_tasks:
|
||||
return
|
||||
if self._queue is not None:
|
||||
await self._queue.join()
|
||||
for t in self._worker_tasks:
|
||||
if not t.done():
|
||||
t.cancel()
|
||||
for t in self._worker_tasks:
|
||||
try:
|
||||
await t
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
self._worker_tasks.clear()
|
||||
|
||||
async def flush(self) -> None:
|
||||
"""Wait for all queued writes to complete. Useful for testing."""
|
||||
if self.enable_write_queue and self._queue is not None:
|
||||
await self._queue.join()
|
||||
|
||||
async def store_response_object(
|
||||
self, response_object: OpenAIResponseObject, input: list[OpenAIResponseInput]
|
||||
) -> None:
|
||||
if self.enable_write_queue:
|
||||
if self._queue is None:
|
||||
raise ValueError("Responses store is not initialized")
|
||||
try:
|
||||
self._queue.put_nowait((response_object, input))
|
||||
except asyncio.QueueFull:
|
||||
logger.warning(f"Write queue full; adding response id={getattr(response_object, 'id', '<unknown>')}")
|
||||
await self._queue.put((response_object, input))
|
||||
else:
|
||||
await self._write_response_object(response_object, input)
|
||||
|
||||
async def _worker_loop(self) -> None:
|
||||
assert self._queue is not None
|
||||
while True:
|
||||
try:
|
||||
item = await self._queue.get()
|
||||
except asyncio.CancelledError:
|
||||
break
|
||||
response_object, input = item
|
||||
try:
|
||||
await self._write_response_object(response_object, input)
|
||||
except Exception as e: # noqa: BLE001
|
||||
logger.error(f"Error writing response object: {e}")
|
||||
finally:
|
||||
self._queue.task_done()
|
||||
|
||||
async def _write_response_object(
|
||||
self, response_object: OpenAIResponseObject, input: list[OpenAIResponseInput]
|
||||
) -> None:
|
||||
if self.sql_store is None:
|
||||
raise ValueError("Responses store is not initialized")
|
||||
|
||||
data = response_object.model_dump()
|
||||
data["input"] = [input_item.model_dump() for input_item in input]
|
||||
|
||||
|
@ -73,6 +162,9 @@ class ResponsesStore:
|
|||
:param model: The model to filter by.
|
||||
:param order: The order to sort the responses by.
|
||||
"""
|
||||
if not self.sql_store:
|
||||
raise ValueError("Responses store is not initialized")
|
||||
|
||||
if not order:
|
||||
order = Order.desc
|
||||
|
||||
|
@ -100,6 +192,9 @@ class ResponsesStore:
|
|||
"""
|
||||
Get a response object with automatic access control checking.
|
||||
"""
|
||||
if not self.sql_store:
|
||||
raise ValueError("Responses store is not initialized")
|
||||
|
||||
row = await self.sql_store.fetch_one(
|
||||
"openai_responses",
|
||||
where={"id": response_id},
|
||||
|
@ -113,6 +208,9 @@ class ResponsesStore:
|
|||
return OpenAIResponseObjectWithInput(**row["response_object"])
|
||||
|
||||
async def delete_response_object(self, response_id: str) -> OpenAIDeleteResponseObject:
|
||||
if not self.sql_store:
|
||||
raise ValueError("Responses store is not initialized")
|
||||
|
||||
row = await self.sql_store.fetch_one("openai_responses", where={"id": response_id})
|
||||
if not row:
|
||||
raise ValueError(f"Response with id {response_id} not found")
|
||||
|
|
|
@ -22,7 +22,6 @@ class WebMethod:
|
|||
raw_bytes_request_body: bool | None = False
|
||||
# A descriptive name of the corresponding span created by tracing
|
||||
descriptive_name: str | None = None
|
||||
experimental: bool | None = False
|
||||
required_scope: str | None = None
|
||||
deprecated: bool | None = False
|
||||
|
||||
|
@ -39,7 +38,6 @@ def webmethod(
|
|||
response_examples: list[Any] | None = None,
|
||||
raw_bytes_request_body: bool | None = False,
|
||||
descriptive_name: str | None = None,
|
||||
experimental: bool | None = False,
|
||||
required_scope: str | None = None,
|
||||
deprecated: bool | None = False,
|
||||
) -> Callable[[T], T]:
|
||||
|
@ -50,7 +48,6 @@ def webmethod(
|
|||
:param public: True if the operation can be invoked without prior authentication.
|
||||
:param request_examples: Sample requests that the operation might take. Pass a list of objects, not JSON.
|
||||
:param response_examples: Sample responses that the operation might produce. Pass a list of objects, not JSON.
|
||||
:param experimental: True if the operation is experimental and subject to change.
|
||||
:param required_scope: Required scope for this endpoint (e.g., 'monitoring.viewer').
|
||||
"""
|
||||
|
||||
|
@ -64,7 +61,6 @@ def webmethod(
|
|||
response_examples=response_examples,
|
||||
raw_bytes_request_body=raw_bytes_request_body,
|
||||
descriptive_name=descriptive_name,
|
||||
experimental=experimental,
|
||||
required_scope=required_scope,
|
||||
deprecated=deprecated,
|
||||
)
|
||||
|
|
|
@ -567,6 +567,22 @@ def get_class_properties(typ: type) -> Iterable[Tuple[str, type | str]]:
|
|||
|
||||
if is_dataclass_type(typ):
|
||||
return ((field.name, field.type) for field in dataclasses.fields(typ))
|
||||
elif hasattr(typ, "model_fields"):
|
||||
# Pydantic BaseModel - use model_fields to exclude ClassVar and other non-field attributes
|
||||
# Reconstruct Annotated type if discriminator exists to preserve metadata
|
||||
from typing import Annotated, Any, cast
|
||||
from pydantic.fields import FieldInfo
|
||||
|
||||
def get_field_type(name: str, field: Any) -> type | str:
|
||||
# If field has discriminator, wrap in Annotated to preserve it for schema generation
|
||||
if field.discriminator:
|
||||
field_info = FieldInfo(annotation=None, discriminator=field.discriminator)
|
||||
# Annotated returns _AnnotatedAlias which isn't a type but is valid here
|
||||
return Annotated[field.annotation, field_info] # type: ignore[return-value]
|
||||
# field.annotation can be Union types, Annotated, etc. which aren't type but are valid
|
||||
return field.annotation # type: ignore[return-value,no-any-return]
|
||||
|
||||
return ((name, get_field_type(name, field)) for name, field in typ.model_fields.items())
|
||||
else:
|
||||
resolved_hints = get_resolved_hints(typ)
|
||||
return resolved_hints.items()
|
||||
|
|
|
@ -92,7 +92,12 @@ def get_class_property_docstrings(
|
|||
:returns: A dictionary mapping property names to descriptions.
|
||||
"""
|
||||
|
||||
result = {}
|
||||
result: Dict[str, str] = {}
|
||||
# Only try to get MRO if data_type is actually a class
|
||||
# Special types like Literal, Union, etc. don't have MRO
|
||||
if not inspect.isclass(data_type):
|
||||
return result
|
||||
|
||||
for base in inspect.getmro(data_type):
|
||||
docstr = docstring.parse_type(base)
|
||||
for param in docstr.params.values():
|
||||
|
|
|
@ -41,7 +41,6 @@ export default function ResponseDetailPage() {
|
|||
temperature: responseData.temperature,
|
||||
top_p: responseData.top_p,
|
||||
truncation: responseData.truncation,
|
||||
user: responseData.user,
|
||||
};
|
||||
};
|
||||
|
||||
|
|
|
@ -43,7 +43,6 @@ const convertResponseListData = (
|
|||
temperature: responseData.temperature,
|
||||
top_p: responseData.top_p,
|
||||
truncation: responseData.truncation,
|
||||
user: responseData.user,
|
||||
};
|
||||
};
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue