implement embedding generation in supported inference providers (#589)

This PR adds the ability to generate embeddings in all supported
inference providers.

```
pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py -k "bedrock" --inference-model="amazon.titan-embed-text-v2:0"  --env EMBEDDING_DIMENSION=1024

 pytest -v -s -k "vllm"  --inferrence-model="intfloat/e5-mistral-7b-instruct"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=4096  --env VLLM_URL="http://localhost:9798/v1"

pytest -v -s --inference-model="nomic-ai/nomic-embed-text-v1.5"  llama_stack/providers/tests/inference/test_embeddings.py  -k "fireworks"  --env FIREWORKS_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=128

pytest -v -s --inference-model="togethercomputer/m2-bert-80M-2k-retrieval"  llama_stack/providers/tests/inference/test_embeddings.py  -k "together"  --env TOGETHER_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=768

pytest -v -s -k "ollama"  --inference-model="all-minilm:v8"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

 torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="sentence-transformers/all-MiniLM-L6-v2"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

```
This commit is contained in:
Dinesh Yeduguru 2024-12-12 11:17:39 -08:00
parent 6a23f24ee0
commit d362d2d740
32 changed files with 597 additions and 143 deletions

View file

@ -16,12 +16,14 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import build_model_alias
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_media_to_url,
request_has_media,
)
from .config import MetaReferenceInferenceConfig
from .generation import Llama
from .model_parallel import LlamaModelParallelGenerator
@ -32,12 +34,17 @@ log = logging.getLogger(__name__)
SEMAPHORE = asyncio.Semaphore(1)
class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
class MetaReferenceInferenceImpl(
SentenceTransformerEmbeddingMixin,
Inference,
ModelsProtocolPrivate,
):
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
self.config = config
model = resolve_model(config.model)
ModelRegistryHelper.__init__(
self,
if model is None:
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
self.model_registry_helper = ModelRegistryHelper(
[
build_model_alias(
model.descriptor(),
@ -45,8 +52,6 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
)
],
)
if model is None:
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
self.model = model
# verify that the checkpoint actually is for this model lol
@ -76,6 +81,12 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: Model) -> Model:
model = await self.model_registry_helper.register_model(model)
if model.model_type == ModelType.embedding_model:
self._load_sentence_transformer_model(model.provider_resource_id)
return model
async def completion(
self,
model_id: str,
@ -394,13 +405,6 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
for x in impl():
yield x
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def request_with_localized_media(
request: Union[ChatCompletionRequest, CompletionRequest],

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.inline.inference.sentence_transformers.config import (
SentenceTransformersInferenceConfig,
)
async def get_provider_impl(
config: SentenceTransformersInferenceConfig,
_deps,
):
from .sentence_transformers import SentenceTransformersInferenceImpl
impl = SentenceTransformersInferenceImpl(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,10 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class SentenceTransformersInferenceConfig(BaseModel): ...

View file

@ -0,0 +1,74 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from typing import AsyncGenerator, List, Optional, Union
from llama_stack.apis.inference import (
CompletionResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
)
from .config import SentenceTransformersInferenceConfig
log = logging.getLogger(__name__)
class SentenceTransformersInferenceImpl(
SentenceTransformerEmbeddingMixin,
Inference,
ModelsProtocolPrivate,
):
def __init__(self, config: SentenceTransformersInferenceConfig) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def register_model(self, model: Model) -> None:
_ = self._load_sentence_transformer_model(model.provider_resource_id)
return model
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model_id: str,
content: str,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncGenerator]:
raise ValueError("Sentence transformers don't support completion")
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise ValueError("Sentence transformers don't support chat completion")

View file

@ -4,16 +4,19 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import FaissImplConfig
async def get_provider_impl(config: FaissImplConfig, _deps):
async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]):
from .faiss import FaissMemoryImpl
assert isinstance(
config, FaissImplConfig
), f"Unexpected config type: {type(config)}"
impl = FaissMemoryImpl(config)
impl = FaissMemoryImpl(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -19,11 +19,10 @@ from numpy.typing import NDArray
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.vector_store import (
ALL_MINILM_L6_V2_DIMENSION,
BankWithIndex,
EmbeddingIndex,
)
@ -32,7 +31,8 @@ from .config import FaissImplConfig
logger = logging.getLogger(__name__)
MEMORY_BANKS_PREFIX = "memory_banks:v1::"
MEMORY_BANKS_PREFIX = "memory_banks:v2::"
FAISS_INDEX_PREFIX = "faiss_index:v2::"
class FaissIndex(EmbeddingIndex):
@ -56,7 +56,7 @@ class FaissIndex(EmbeddingIndex):
if not self.kvstore:
return
index_key = f"faiss_index:v1::{self.bank_id}"
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
stored_data = await self.kvstore.get(index_key)
if stored_data:
@ -85,16 +85,25 @@ class FaissIndex(EmbeddingIndex):
"faiss_index": base64.b64encode(buffer.getvalue()).decode("utf-8"),
}
index_key = f"faiss_index:v1::{self.bank_id}"
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
await self.kvstore.set(key=index_key, value=json.dumps(data))
async def delete(self):
if not self.kvstore or not self.bank_id:
return
await self.kvstore.delete(f"faiss_index:v1::{self.bank_id}")
await self.kvstore.delete(f"{FAISS_INDEX_PREFIX}{self.bank_id}")
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
# Add dimension check
embedding_dim = (
embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
)
if embedding_dim != self.index.d:
raise ValueError(
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
)
indexlen = len(self.id_by_index)
for i, chunk in enumerate(chunks):
self.chunk_by_index[indexlen + i] = chunk
@ -124,8 +133,9 @@ class FaissIndex(EmbeddingIndex):
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: FaissImplConfig) -> None:
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
self.cache = {}
self.kvstore = None
@ -139,10 +149,11 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
for bank_data in stored_banks:
bank = VectorMemoryBank.model_validate_json(bank_data)
index = BankWithIndex(
bank=bank,
index=await FaissIndex.create(
ALL_MINILM_L6_V2_DIMENSION, self.kvstore, bank.identifier
bank,
await FaissIndex.create(
bank.embedding_dimension, self.kvstore, bank.identifier
),
self.inference_api,
)
self.cache[bank.identifier] = index
@ -166,13 +177,13 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
)
# Store in cache
index = BankWithIndex(
bank=memory_bank,
index=await FaissIndex.create(
ALL_MINILM_L6_V2_DIMENSION, self.kvstore, memory_bank.identifier
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank,
await FaissIndex.create(
memory_bank.embedding_dimension, self.kvstore, memory_bank.identifier
),
self.inference_api,
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBank]:
return [i.bank for i in self.cache.values()]