implement embedding generation in supported inference providers (#589)

This PR adds the ability to generate embeddings in all supported
inference providers.

```
pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py -k "bedrock" --inference-model="amazon.titan-embed-text-v2:0"  --env EMBEDDING_DIMENSION=1024

 pytest -v -s -k "vllm"  --inferrence-model="intfloat/e5-mistral-7b-instruct"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=4096  --env VLLM_URL="http://localhost:9798/v1"

pytest -v -s --inference-model="nomic-ai/nomic-embed-text-v1.5"  llama_stack/providers/tests/inference/test_embeddings.py  -k "fireworks"  --env FIREWORKS_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=128

pytest -v -s --inference-model="togethercomputer/m2-bert-80M-2k-retrieval"  llama_stack/providers/tests/inference/test_embeddings.py  -k "together"  --env TOGETHER_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=768

pytest -v -s -k "ollama"  --inference-model="all-minilm:v8"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

 torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="sentence-transformers/all-MiniLM-L6-v2"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

```
This commit is contained in:
Dinesh Yeduguru 2024-12-12 11:17:39 -08:00
parent 6a23f24ee0
commit d362d2d740
32 changed files with 597 additions and 143 deletions

View file

@ -36,6 +36,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_image_media_to_url,
request_has_media,
)
@ -321,9 +322,30 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
assert all(
not content_has_media(content) for content in contents
), "Ollama does not support media for embeddings"
response = await self.client.embed(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
)
embeddings = response["embeddings"]
return EmbeddingsResponse(embeddings=embeddings)
async def register_model(self, model: Model) -> Model:
# ollama does not have embedding models running. Check if the model is in list of available models.
if model.model_type == ModelType.embedding_model:
response = await self.client.list()
available_models = [m["model"] for m in response["models"]]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model '{model.provider_resource_id}' is not available in Ollama. "
f"Available models: {', '.join(available_models)}"
)
return model
model = await self.register_helper.register_model(model)
models = await self.client.ps()
available_models = [m["model"] for m in models["models"]]