implement embedding generation in supported inference providers (#589)

This PR adds the ability to generate embeddings in all supported
inference providers.

```
pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py -k "bedrock" --inference-model="amazon.titan-embed-text-v2:0"  --env EMBEDDING_DIMENSION=1024

 pytest -v -s -k "vllm"  --inferrence-model="intfloat/e5-mistral-7b-instruct"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=4096  --env VLLM_URL="http://localhost:9798/v1"

pytest -v -s --inference-model="nomic-ai/nomic-embed-text-v1.5"  llama_stack/providers/tests/inference/test_embeddings.py  -k "fireworks"  --env FIREWORKS_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=128

pytest -v -s --inference-model="togethercomputer/m2-bert-80M-2k-retrieval"  llama_stack/providers/tests/inference/test_embeddings.py  -k "together"  --env TOGETHER_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=768

pytest -v -s -k "ollama"  --inference-model="all-minilm:v8"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

 torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="sentence-transformers/all-MiniLM-L6-v2"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

```
This commit is contained in:
Dinesh Yeduguru 2024-12-12 11:17:39 -08:00
parent 6a23f24ee0
commit d362d2d740
32 changed files with 597 additions and 143 deletions

View file

@ -101,10 +101,11 @@ class QdrantIndex(EmbeddingIndex):
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: QdrantConfig) -> None:
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
self.cache = {}
self.inference_api = inference_api
async def initialize(self) -> None:
pass
@ -123,6 +124,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
index = BankWithIndex(
bank=memory_bank,
index=QdrantIndex(self.client, memory_bank.identifier),
inference_api=self.inference_api,
)
self.cache[memory_bank.identifier] = index
@ -138,6 +140,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
index = BankWithIndex(
bank=bank,
index=QdrantIndex(client=self.client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index