mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 10:39:48 +00:00
implement embedding generation in supported inference providers (#589)
This PR adds the ability to generate embeddings in all supported inference providers. ``` pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py -k "bedrock" --inference-model="amazon.titan-embed-text-v2:0" --env EMBEDDING_DIMENSION=1024 pytest -v -s -k "vllm" --inferrence-model="intfloat/e5-mistral-7b-instruct" llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=4096 --env VLLM_URL="http://localhost:9798/v1" pytest -v -s --inference-model="nomic-ai/nomic-embed-text-v1.5" llama_stack/providers/tests/inference/test_embeddings.py -k "fireworks" --env FIREWORKS_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=128 pytest -v -s --inference-model="togethercomputer/m2-bert-80M-2k-retrieval" llama_stack/providers/tests/inference/test_embeddings.py -k "together" --env TOGETHER_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=768 pytest -v -s -k "ollama" --inference-model="all-minilm:v8" llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384 torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="sentence-transformers/all-MiniLM-L6-v2" llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384 ```
This commit is contained in:
parent
6a23f24ee0
commit
d362d2d740
32 changed files with 597 additions and 143 deletions
|
|
@ -9,9 +9,9 @@ import os
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.models import ModelInput
|
||||
|
||||
from llama_stack.apis.models import ModelInput, ModelType
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.inline.inference.meta_reference import (
|
||||
MetaReferenceInferenceConfig,
|
||||
)
|
||||
|
|
@ -47,6 +47,9 @@ def inference_meta_reference(inference_model) -> ProviderFixture:
|
|||
inference_model = (
|
||||
[inference_model] if isinstance(inference_model, str) else inference_model
|
||||
)
|
||||
# If embedding dimension is set, use the 8B model for testing
|
||||
if os.getenv("EMBEDDING_DIMENSION"):
|
||||
inference_model = ["meta-llama/Llama-3.1-8B-Instruct"]
|
||||
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
|
|
@ -85,7 +88,7 @@ def inference_ollama(inference_model) -> ProviderFixture:
|
|||
inference_model = (
|
||||
[inference_model] if isinstance(inference_model, str) else inference_model
|
||||
)
|
||||
if "Llama3.1-8B-Instruct" in inference_model:
|
||||
if inference_model and "Llama3.1-8B-Instruct" in inference_model:
|
||||
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
|
||||
|
||||
return ProviderFixture(
|
||||
|
|
@ -232,11 +235,23 @@ INFERENCE_FIXTURES = [
|
|||
async def inference_stack(request, inference_model):
|
||||
fixture_name = request.param
|
||||
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
|
||||
model_type = ModelType.llm
|
||||
metadata = {}
|
||||
if os.getenv("EMBEDDING_DIMENSION"):
|
||||
model_type = ModelType.embedding_model
|
||||
metadata["embedding_dimension"] = get_env_or_fail("EMBEDDING_DIMENSION")
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.inference],
|
||||
{"inference": inference_fixture.providers},
|
||||
inference_fixture.provider_data,
|
||||
models=[ModelInput(model_id=inference_model)],
|
||||
models=[
|
||||
ModelInput(
|
||||
model_id=inference_model,
|
||||
model_type=model_type,
|
||||
metadata=metadata,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
return test_stack.impls[Api.inference], test_stack.impls[Api.models]
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue