mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Merge remote-tracking branch 'origin/main' into api_updates_1
This commit is contained in:
commit
d3965dd435
11 changed files with 428 additions and 3 deletions
|
@ -1,3 +1,4 @@
|
||||||
include requirements.txt
|
include requirements.txt
|
||||||
include llama_toolchain/data/*.yaml
|
include llama_toolchain/data/*.yaml
|
||||||
include llama_toolchain/distribution/*.sh
|
include llama_toolchain/distribution/*.sh
|
||||||
|
include llama_toolchain/cli/scripts/*.sh
|
||||||
|
|
5
llama_toolchain/cli/scripts/__init__.py
Normal file
5
llama_toolchain/cli/scripts/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
38
llama_toolchain/cli/scripts/install-wheel-from-presigned.sh
Executable file
38
llama_toolchain/cli/scripts/install-wheel-from-presigned.sh
Executable file
|
@ -0,0 +1,38 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
set -euo pipefail
|
||||||
|
|
||||||
|
if [ $# -eq 0 ]; then
|
||||||
|
echo "Please provide a URL as an argument."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
URL=$1
|
||||||
|
|
||||||
|
HEADERS_FILE=$(mktemp)
|
||||||
|
curl -s -I "$URL" >"$HEADERS_FILE"
|
||||||
|
FILENAME=$(grep -i "x-manifold-obj-canonicalpath:" "$HEADERS_FILE" | sed -E 's/.*nodes\/[^\/]+\/(.+)/\1/' | tr -d "\r\n")
|
||||||
|
|
||||||
|
if [ -z "$FILENAME" ]; then
|
||||||
|
echo "Could not find the x-manifold-obj-canonicalpath header."
|
||||||
|
echo "HEADERS_FILE contents: "
|
||||||
|
cat "$HEADERS_FILE"
|
||||||
|
echo ""
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "Downloading $FILENAME..."
|
||||||
|
|
||||||
|
curl -s -L -o "$FILENAME" "$URL"
|
||||||
|
|
||||||
|
echo "Installing $FILENAME..."
|
||||||
|
pip install "$FILENAME"
|
||||||
|
echo "Successfully installed $FILENAME"
|
||||||
|
|
||||||
|
rm -f "$FILENAME"
|
18
llama_toolchain/cli/scripts/run.py
Normal file
18
llama_toolchain/cli/scripts/run.py
Normal file
|
@ -0,0 +1,18 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
def install_wheel_from_presigned():
|
||||||
|
file = "install-wheel-from-presigned.sh"
|
||||||
|
script_path = os.path.join(os.path.dirname(__file__), file)
|
||||||
|
try:
|
||||||
|
subprocess.run(["sh", script_path] + sys.argv[1:], check=True)
|
||||||
|
except Exception:
|
||||||
|
sys.exit(1)
|
|
@ -38,6 +38,15 @@ def available_distribution_specs() -> List[DistributionSpec]:
|
||||||
Api.memory: "meta-reference-faiss",
|
Api.memory: "meta-reference-faiss",
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
|
DistributionSpec(
|
||||||
|
spec_id="remote-fireworks",
|
||||||
|
description="Use Fireworks.ai for running LLM inference",
|
||||||
|
provider_specs={
|
||||||
|
Api.inference: providers[Api.inference]["fireworks"],
|
||||||
|
Api.safety: providers[Api.safety]["meta-reference"],
|
||||||
|
Api.agentic_system: providers[Api.agentic_system]["meta-reference"],
|
||||||
|
},
|
||||||
|
),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
8
llama_toolchain/inference/fireworks/__init__.py
Normal file
8
llama_toolchain/inference/fireworks/__init__.py
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from .config import FireworksImplConfig # noqa
|
||||||
|
from .fireworks import get_provider_impl # noqa
|
20
llama_toolchain/inference/fireworks/config.py
Normal file
20
llama_toolchain/inference/fireworks/config.py
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from llama_models.schema_utils import json_schema_type
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class FireworksImplConfig(BaseModel):
|
||||||
|
url: str = Field(
|
||||||
|
default="https://api.fireworks.api/inference",
|
||||||
|
description="The URL for the Fireworks server",
|
||||||
|
)
|
||||||
|
api_key: str = Field(
|
||||||
|
default="",
|
||||||
|
description="The Fireworks.ai API Key",
|
||||||
|
)
|
312
llama_toolchain/inference/fireworks/fireworks.py
Normal file
312
llama_toolchain/inference/fireworks/fireworks.py
Normal file
|
@ -0,0 +1,312 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import uuid
|
||||||
|
from typing import AsyncGenerator, Dict
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
from llama_models.llama3.api.datatypes import (
|
||||||
|
BuiltinTool,
|
||||||
|
CompletionMessage,
|
||||||
|
Message,
|
||||||
|
StopReason,
|
||||||
|
ToolCall,
|
||||||
|
)
|
||||||
|
from llama_models.llama3.api.tool_utils import ToolUtils
|
||||||
|
from llama_models.sku_list import resolve_model
|
||||||
|
from fireworks.client import Fireworks
|
||||||
|
|
||||||
|
from llama_toolchain.distribution.datatypes import Api, ProviderSpec
|
||||||
|
from llama_toolchain.inference.api import (
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ChatCompletionResponseEvent,
|
||||||
|
ChatCompletionResponseEventType,
|
||||||
|
ChatCompletionResponseStreamChunk,
|
||||||
|
CompletionRequest,
|
||||||
|
Inference,
|
||||||
|
ToolCallDelta,
|
||||||
|
ToolCallParseStatus,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .config import FireworksImplConfig
|
||||||
|
|
||||||
|
FIREWORKS_SUPPORTED_MODELS = {
|
||||||
|
"Meta-Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
|
||||||
|
"Meta-Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
|
||||||
|
"Meta-Llama3.1-405B-Instruct": "fireworks/llama-v3p1-405b-instruct",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async def get_provider_impl(
|
||||||
|
config: FireworksImplConfig, _deps: Dict[Api, ProviderSpec]
|
||||||
|
) -> Inference:
|
||||||
|
assert isinstance(
|
||||||
|
config, FireworksImplConfig
|
||||||
|
), f"Unexpected config type: {type(config)}"
|
||||||
|
impl = FireworksInference(config)
|
||||||
|
await impl.initialize()
|
||||||
|
return impl
|
||||||
|
|
||||||
|
|
||||||
|
class FireworksInference(Inference):
|
||||||
|
def __init__(self, config: FireworksImplConfig) -> None:
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
@property
|
||||||
|
def client(self) -> Fireworks:
|
||||||
|
return Fireworks(api_key=self.config.api_key)
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
return
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def _messages_to_fireworks_messages(self, messages: list[Message]) -> list:
|
||||||
|
fireworks_messages = []
|
||||||
|
for message in messages:
|
||||||
|
if message.role == "ipython":
|
||||||
|
role = "tool"
|
||||||
|
else:
|
||||||
|
role = message.role
|
||||||
|
fireworks_messages.append({"role": role, "content": message.content})
|
||||||
|
|
||||||
|
return fireworks_messages
|
||||||
|
|
||||||
|
def resolve_fireworks_model(self, model_name: str) -> str:
|
||||||
|
model = resolve_model(model_name)
|
||||||
|
assert (
|
||||||
|
model is not None
|
||||||
|
and model.descriptor(shorten_default_variant=True)
|
||||||
|
in FIREWORKS_SUPPORTED_MODELS
|
||||||
|
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(FIREWORKS_SUPPORTED_MODELS.keys())}"
|
||||||
|
|
||||||
|
return FIREWORKS_SUPPORTED_MODELS.get(
|
||||||
|
model.descriptor(shorten_default_variant=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_fireworks_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||||
|
options = {}
|
||||||
|
if request.sampling_params is not None:
|
||||||
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||||
|
if getattr(request.sampling_params, attr):
|
||||||
|
options[attr] = getattr(request.sampling_params, attr)
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||||
|
# accumulate sampling params and other options to pass to fireworks
|
||||||
|
options = self.get_fireworks_chat_options(request)
|
||||||
|
fireworks_model = self.resolve_fireworks_model(request.model)
|
||||||
|
|
||||||
|
if not request.stream:
|
||||||
|
r = await self.client.chat.completions.acreate(
|
||||||
|
model=fireworks_model,
|
||||||
|
messages=self._messages_to_fireworks_messages(request.messages),
|
||||||
|
stream=False,
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
stop_reason = None
|
||||||
|
if r.choices[0].finish_reason:
|
||||||
|
if r.choices[0].finish_reason == "stop":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif r.choices[0].finish_reason == "length":
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
|
||||||
|
completion_message = decode_assistant_message_from_content(
|
||||||
|
r.choices[0].message.content,
|
||||||
|
stop_reason,
|
||||||
|
)
|
||||||
|
yield ChatCompletionResponse(
|
||||||
|
completion_message=completion_message,
|
||||||
|
logprobs=None,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.start,
|
||||||
|
delta="",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
buffer = ""
|
||||||
|
ipython = False
|
||||||
|
stop_reason = None
|
||||||
|
|
||||||
|
async for chunk in self.client.chat.completions.acreate(
|
||||||
|
model=fireworks_model,
|
||||||
|
messages=self._messages_to_fireworks_messages(request.messages),
|
||||||
|
stream=True,
|
||||||
|
**options,
|
||||||
|
):
|
||||||
|
if chunk.choices[0].finish_reason:
|
||||||
|
if stop_reason is None and chunk.choices[0].finish_reason == "stop":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif (
|
||||||
|
stop_reason is None
|
||||||
|
and chunk.choices[0].finish_reason == "length"
|
||||||
|
):
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
break
|
||||||
|
|
||||||
|
text = chunk.choices[0].delta.content
|
||||||
|
if text is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||||
|
if not ipython and text.startswith("<|python_tag|>"):
|
||||||
|
ipython = True
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content="",
|
||||||
|
parse_status=ToolCallParseStatus.started,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
buffer += text
|
||||||
|
continue
|
||||||
|
|
||||||
|
if ipython:
|
||||||
|
if text == "<|eot_id|>":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
elif text == "<|eom_id|>":
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
|
||||||
|
buffer += text
|
||||||
|
delta = ToolCallDelta(
|
||||||
|
content=text,
|
||||||
|
parse_status=ToolCallParseStatus.in_progress,
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=delta,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
buffer += text
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=text,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# parse tool calls and report errors
|
||||||
|
message = decode_assistant_message_from_content(buffer, stop_reason)
|
||||||
|
parsed_tool_calls = len(message.tool_calls) > 0
|
||||||
|
if ipython and not parsed_tool_calls:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content="",
|
||||||
|
parse_status=ToolCallParseStatus.failure,
|
||||||
|
),
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for tool_call in message.tool_calls:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content=tool_call,
|
||||||
|
parse_status=ToolCallParseStatus.success,
|
||||||
|
),
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.complete,
|
||||||
|
delta="",
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: Consolidate this with impl in llama-models
|
||||||
|
def decode_assistant_message_from_content(
|
||||||
|
content: str,
|
||||||
|
stop_reason: StopReason,
|
||||||
|
) -> CompletionMessage:
|
||||||
|
ipython = content.startswith("<|python_tag|>")
|
||||||
|
if ipython:
|
||||||
|
content = content[len("<|python_tag|>") :]
|
||||||
|
|
||||||
|
if content.endswith("<|eot_id|>"):
|
||||||
|
content = content[: -len("<|eot_id|>")]
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif content.endswith("<|eom_id|>"):
|
||||||
|
content = content[: -len("<|eom_id|>")]
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
|
||||||
|
tool_name = None
|
||||||
|
tool_arguments = {}
|
||||||
|
|
||||||
|
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
|
||||||
|
if custom_tool_info is not None:
|
||||||
|
tool_name, tool_arguments = custom_tool_info
|
||||||
|
# Sometimes when agent has custom tools alongside builin tools
|
||||||
|
# Agent responds for builtin tool calls in the format of the custom tools
|
||||||
|
# This code tries to handle that case
|
||||||
|
if tool_name in BuiltinTool.__members__:
|
||||||
|
tool_name = BuiltinTool[tool_name]
|
||||||
|
tool_arguments = {
|
||||||
|
"query": list(tool_arguments.values())[0],
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
|
||||||
|
if builtin_tool_info is not None:
|
||||||
|
tool_name, query = builtin_tool_info
|
||||||
|
tool_arguments = {
|
||||||
|
"query": query,
|
||||||
|
}
|
||||||
|
if tool_name in BuiltinTool.__members__:
|
||||||
|
tool_name = BuiltinTool[tool_name]
|
||||||
|
elif ipython:
|
||||||
|
tool_name = BuiltinTool.code_interpreter
|
||||||
|
tool_arguments = {
|
||||||
|
"code": content,
|
||||||
|
}
|
||||||
|
|
||||||
|
tool_calls = []
|
||||||
|
if tool_name is not None and tool_arguments is not None:
|
||||||
|
call_id = str(uuid.uuid4())
|
||||||
|
tool_calls.append(
|
||||||
|
ToolCall(
|
||||||
|
call_id=call_id,
|
||||||
|
tool_name=tool_name,
|
||||||
|
arguments=tool_arguments,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
content = ""
|
||||||
|
|
||||||
|
if stop_reason is None:
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
|
||||||
|
return CompletionMessage(
|
||||||
|
content=content,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
tool_calls=tool_calls,
|
||||||
|
)
|
|
@ -35,4 +35,13 @@ def available_inference_providers() -> List[ProviderSpec]:
|
||||||
module="llama_toolchain.inference.adapters.ollama",
|
module="llama_toolchain.inference.adapters.ollama",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
|
InlineProviderSpec(
|
||||||
|
api=Api.inference,
|
||||||
|
provider_id="fireworks",
|
||||||
|
pip_packages=[
|
||||||
|
"fireworks-ai",
|
||||||
|
],
|
||||||
|
module="llama_toolchain.inference.fireworks",
|
||||||
|
config_class="llama_toolchain.inference.fireworks.FireworksImplConfig",
|
||||||
|
),
|
||||||
]
|
]
|
||||||
|
|
|
@ -47,7 +47,7 @@ Note that as of today, in the OSS world, such a “loop” is often coded explic
|
||||||
1. The model reasons once again (using all the messages above) and decides to send a final response "In 2023, Denver Nuggets played against the Miami Heat in the NBA finals." to the executor
|
1. The model reasons once again (using all the messages above) and decides to send a final response "In 2023, Denver Nuggets played against the Miami Heat in the NBA finals." to the executor
|
||||||
1. The executor returns the response directly to the user (since there is no tool call to be executed.)
|
1. The executor returns the response directly to the user (since there is no tool call to be executed.)
|
||||||
|
|
||||||
The sequence diagram that details the steps is here.
|
The sequence diagram that details the steps is [here](https://github.com/meta-llama/llama-agentic-system/blob/main/docs/sequence-diagram.md).
|
||||||
|
|
||||||
* /memory_banks - to support creating multiple repositories of data that can be available for agentic systems
|
* /memory_banks - to support creating multiple repositories of data that can be available for agentic systems
|
||||||
* /agentic_system - to support creating and running agentic systems. The sub-APIs support the creation and management of the steps, turns, and sessions within agentic applications.
|
* /agentic_system - to support creating and running agentic systems. The sub-APIs support the creation and management of the steps, turns, and sessions within agentic applications.
|
||||||
|
|
9
setup.py
9
setup.py
|
@ -16,11 +16,16 @@ def read_requirements():
|
||||||
|
|
||||||
setup(
|
setup(
|
||||||
name="llama_toolchain",
|
name="llama_toolchain",
|
||||||
version="0.0.8",
|
version="0.0.10",
|
||||||
author="Meta Llama",
|
author="Meta Llama",
|
||||||
author_email="llama-oss@meta.com",
|
author_email="llama-oss@meta.com",
|
||||||
description="Llama toolchain",
|
description="Llama toolchain",
|
||||||
entry_points={"console_scripts": ["llama = llama_toolchain.cli.llama:main"]},
|
entry_points={
|
||||||
|
"console_scripts": [
|
||||||
|
"llama = llama_toolchain.cli.llama:main",
|
||||||
|
"install-wheel-from-presigned = llama_toolchain.cli.scripts.run:install_wheel_from_presigned",
|
||||||
|
]
|
||||||
|
},
|
||||||
long_description=open("README.md").read(),
|
long_description=open("README.md").read(),
|
||||||
long_description_content_type="text/markdown",
|
long_description_content_type="text/markdown",
|
||||||
url="https://github.com/meta-llama/llama-toolchain",
|
url="https://github.com/meta-llama/llama-toolchain",
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue