mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Merge remote-tracking branch 'origin/main' into api_updates_1
This commit is contained in:
commit
d3965dd435
11 changed files with 428 additions and 3 deletions
|
@ -1,3 +1,4 @@
|
|||
include requirements.txt
|
||||
include llama_toolchain/data/*.yaml
|
||||
include llama_toolchain/distribution/*.sh
|
||||
include llama_toolchain/cli/scripts/*.sh
|
||||
|
|
5
llama_toolchain/cli/scripts/__init__.py
Normal file
5
llama_toolchain/cli/scripts/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
38
llama_toolchain/cli/scripts/install-wheel-from-presigned.sh
Executable file
38
llama_toolchain/cli/scripts/install-wheel-from-presigned.sh
Executable file
|
@ -0,0 +1,38 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
if [ $# -eq 0 ]; then
|
||||
echo "Please provide a URL as an argument."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
URL=$1
|
||||
|
||||
HEADERS_FILE=$(mktemp)
|
||||
curl -s -I "$URL" >"$HEADERS_FILE"
|
||||
FILENAME=$(grep -i "x-manifold-obj-canonicalpath:" "$HEADERS_FILE" | sed -E 's/.*nodes\/[^\/]+\/(.+)/\1/' | tr -d "\r\n")
|
||||
|
||||
if [ -z "$FILENAME" ]; then
|
||||
echo "Could not find the x-manifold-obj-canonicalpath header."
|
||||
echo "HEADERS_FILE contents: "
|
||||
cat "$HEADERS_FILE"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Downloading $FILENAME..."
|
||||
|
||||
curl -s -L -o "$FILENAME" "$URL"
|
||||
|
||||
echo "Installing $FILENAME..."
|
||||
pip install "$FILENAME"
|
||||
echo "Successfully installed $FILENAME"
|
||||
|
||||
rm -f "$FILENAME"
|
18
llama_toolchain/cli/scripts/run.py
Normal file
18
llama_toolchain/cli/scripts/run.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
|
||||
def install_wheel_from_presigned():
|
||||
file = "install-wheel-from-presigned.sh"
|
||||
script_path = os.path.join(os.path.dirname(__file__), file)
|
||||
try:
|
||||
subprocess.run(["sh", script_path] + sys.argv[1:], check=True)
|
||||
except Exception:
|
||||
sys.exit(1)
|
|
@ -38,6 +38,15 @@ def available_distribution_specs() -> List[DistributionSpec]:
|
|||
Api.memory: "meta-reference-faiss",
|
||||
},
|
||||
),
|
||||
DistributionSpec(
|
||||
spec_id="remote-fireworks",
|
||||
description="Use Fireworks.ai for running LLM inference",
|
||||
provider_specs={
|
||||
Api.inference: providers[Api.inference]["fireworks"],
|
||||
Api.safety: providers[Api.safety]["meta-reference"],
|
||||
Api.agentic_system: providers[Api.agentic_system]["meta-reference"],
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
|
8
llama_toolchain/inference/fireworks/__init__.py
Normal file
8
llama_toolchain/inference/fireworks/__init__.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import FireworksImplConfig # noqa
|
||||
from .fireworks import get_provider_impl # noqa
|
20
llama_toolchain/inference/fireworks/config.py
Normal file
20
llama_toolchain/inference/fireworks/config.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FireworksImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.fireworks.api/inference",
|
||||
description="The URL for the Fireworks server",
|
||||
)
|
||||
api_key: str = Field(
|
||||
default="",
|
||||
description="The Fireworks.ai API Key",
|
||||
)
|
312
llama_toolchain/inference/fireworks/fireworks.py
Normal file
312
llama_toolchain/inference/fireworks/fireworks.py
Normal file
|
@ -0,0 +1,312 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
from typing import AsyncGenerator, Dict
|
||||
|
||||
import httpx
|
||||
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
BuiltinTool,
|
||||
CompletionMessage,
|
||||
Message,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
)
|
||||
from llama_models.llama3.api.tool_utils import ToolUtils
|
||||
from llama_models.sku_list import resolve_model
|
||||
from fireworks.client import Fireworks
|
||||
|
||||
from llama_toolchain.distribution.datatypes import Api, ProviderSpec
|
||||
from llama_toolchain.inference.api import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
|
||||
from .config import FireworksImplConfig
|
||||
|
||||
FIREWORKS_SUPPORTED_MODELS = {
|
||||
"Meta-Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
|
||||
"Meta-Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
|
||||
"Meta-Llama3.1-405B-Instruct": "fireworks/llama-v3p1-405b-instruct",
|
||||
}
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: FireworksImplConfig, _deps: Dict[Api, ProviderSpec]
|
||||
) -> Inference:
|
||||
assert isinstance(
|
||||
config, FireworksImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = FireworksInference(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
||||
|
||||
class FireworksInference(Inference):
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
@property
|
||||
def client(self) -> Fireworks:
|
||||
return Fireworks(api_key=self.config.api_key)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _messages_to_fireworks_messages(self, messages: list[Message]) -> list:
|
||||
fireworks_messages = []
|
||||
for message in messages:
|
||||
if message.role == "ipython":
|
||||
role = "tool"
|
||||
else:
|
||||
role = message.role
|
||||
fireworks_messages.append({"role": role, "content": message.content})
|
||||
|
||||
return fireworks_messages
|
||||
|
||||
def resolve_fireworks_model(self, model_name: str) -> str:
|
||||
model = resolve_model(model_name)
|
||||
assert (
|
||||
model is not None
|
||||
and model.descriptor(shorten_default_variant=True)
|
||||
in FIREWORKS_SUPPORTED_MODELS
|
||||
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(FIREWORKS_SUPPORTED_MODELS.keys())}"
|
||||
|
||||
return FIREWORKS_SUPPORTED_MODELS.get(
|
||||
model.descriptor(shorten_default_variant=True)
|
||||
)
|
||||
|
||||
def get_fireworks_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
if request.sampling_params is not None:
|
||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||
if getattr(request.sampling_params, attr):
|
||||
options[attr] = getattr(request.sampling_params, attr)
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
# accumulate sampling params and other options to pass to fireworks
|
||||
options = self.get_fireworks_chat_options(request)
|
||||
fireworks_model = self.resolve_fireworks_model(request.model)
|
||||
|
||||
if not request.stream:
|
||||
r = await self.client.chat.completions.acreate(
|
||||
model=fireworks_model,
|
||||
messages=self._messages_to_fireworks_messages(request.messages),
|
||||
stream=False,
|
||||
**options,
|
||||
)
|
||||
stop_reason = None
|
||||
if r.choices[0].finish_reason:
|
||||
if r.choices[0].finish_reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif r.choices[0].finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = decode_assistant_message_from_content(
|
||||
r.choices[0].message.content,
|
||||
stop_reason,
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None,
|
||||
)
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
|
||||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in self.client.chat.completions.acreate(
|
||||
model=fireworks_model,
|
||||
messages=self._messages_to_fireworks_messages(request.messages),
|
||||
stream=True,
|
||||
**options,
|
||||
):
|
||||
if chunk.choices[0].finish_reason:
|
||||
if stop_reason is None and chunk.choices[0].finish_reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "length"
|
||||
):
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
text = chunk.choices[0].delta.content
|
||||
if text is None:
|
||||
continue
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer += text
|
||||
continue
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
|
||||
buffer += text
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
else:
|
||||
buffer += text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = decode_assistant_message_from_content(buffer, stop_reason)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# TODO: Consolidate this with impl in llama-models
|
||||
def decode_assistant_message_from_content(
|
||||
content: str,
|
||||
stop_reason: StopReason,
|
||||
) -> CompletionMessage:
|
||||
ipython = content.startswith("<|python_tag|>")
|
||||
if ipython:
|
||||
content = content[len("<|python_tag|>") :]
|
||||
|
||||
if content.endswith("<|eot_id|>"):
|
||||
content = content[: -len("<|eot_id|>")]
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif content.endswith("<|eom_id|>"):
|
||||
content = content[: -len("<|eom_id|>")]
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
tool_name = None
|
||||
tool_arguments = {}
|
||||
|
||||
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
|
||||
if custom_tool_info is not None:
|
||||
tool_name, tool_arguments = custom_tool_info
|
||||
# Sometimes when agent has custom tools alongside builin tools
|
||||
# Agent responds for builtin tool calls in the format of the custom tools
|
||||
# This code tries to handle that case
|
||||
if tool_name in BuiltinTool.__members__:
|
||||
tool_name = BuiltinTool[tool_name]
|
||||
tool_arguments = {
|
||||
"query": list(tool_arguments.values())[0],
|
||||
}
|
||||
else:
|
||||
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
|
||||
if builtin_tool_info is not None:
|
||||
tool_name, query = builtin_tool_info
|
||||
tool_arguments = {
|
||||
"query": query,
|
||||
}
|
||||
if tool_name in BuiltinTool.__members__:
|
||||
tool_name = BuiltinTool[tool_name]
|
||||
elif ipython:
|
||||
tool_name = BuiltinTool.code_interpreter
|
||||
tool_arguments = {
|
||||
"code": content,
|
||||
}
|
||||
|
||||
tool_calls = []
|
||||
if tool_name is not None and tool_arguments is not None:
|
||||
call_id = str(uuid.uuid4())
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
call_id=call_id,
|
||||
tool_name=tool_name,
|
||||
arguments=tool_arguments,
|
||||
)
|
||||
)
|
||||
content = ""
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
return CompletionMessage(
|
||||
content=content,
|
||||
stop_reason=stop_reason,
|
||||
tool_calls=tool_calls,
|
||||
)
|
|
@ -35,4 +35,13 @@ def available_inference_providers() -> List[ProviderSpec]:
|
|||
module="llama_toolchain.inference.adapters.ollama",
|
||||
),
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_id="fireworks",
|
||||
pip_packages=[
|
||||
"fireworks-ai",
|
||||
],
|
||||
module="llama_toolchain.inference.fireworks",
|
||||
config_class="llama_toolchain.inference.fireworks.FireworksImplConfig",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -47,7 +47,7 @@ Note that as of today, in the OSS world, such a “loop” is often coded explic
|
|||
1. The model reasons once again (using all the messages above) and decides to send a final response "In 2023, Denver Nuggets played against the Miami Heat in the NBA finals." to the executor
|
||||
1. The executor returns the response directly to the user (since there is no tool call to be executed.)
|
||||
|
||||
The sequence diagram that details the steps is here.
|
||||
The sequence diagram that details the steps is [here](https://github.com/meta-llama/llama-agentic-system/blob/main/docs/sequence-diagram.md).
|
||||
|
||||
* /memory_banks - to support creating multiple repositories of data that can be available for agentic systems
|
||||
* /agentic_system - to support creating and running agentic systems. The sub-APIs support the creation and management of the steps, turns, and sessions within agentic applications.
|
||||
|
|
9
setup.py
9
setup.py
|
@ -16,11 +16,16 @@ def read_requirements():
|
|||
|
||||
setup(
|
||||
name="llama_toolchain",
|
||||
version="0.0.8",
|
||||
version="0.0.10",
|
||||
author="Meta Llama",
|
||||
author_email="llama-oss@meta.com",
|
||||
description="Llama toolchain",
|
||||
entry_points={"console_scripts": ["llama = llama_toolchain.cli.llama:main"]},
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"llama = llama_toolchain.cli.llama:main",
|
||||
"install-wheel-from-presigned = llama_toolchain.cli.scripts.run:install_wheel_from_presigned",
|
||||
]
|
||||
},
|
||||
long_description=open("README.md").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/meta-llama/llama-toolchain",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue