Merge branch 'main' into chroma

This commit is contained in:
Bwook (Byoungwook) Kim 2025-08-11 10:06:35 +09:00 committed by GitHub
commit d460fd64b4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 1419 additions and 88 deletions

View file

@ -174,7 +174,9 @@ class FaissIndex(EmbeddingIndex):
k: int,
score_threshold: float,
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in FAISS")
raise NotImplementedError(
"Keyword search is not supported - underlying DB FAISS does not support this search mode"
)
async def query_hybrid(
self,
@ -185,7 +187,9 @@ class FaissIndex(EmbeddingIndex):
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in FAISS")
raise NotImplementedError(
"Hybrid search is not supported - underlying DB FAISS does not support this search mode"
)
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):

View file

@ -45,6 +45,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage
@ -535,6 +547,7 @@ That means you're not limited to storing vectors in memory or in a separate serv
- Easy to use
- Fully integrated with Llama Stack
- Supports all search modes: vector, keyword, and hybrid search (both inline and remote configurations)
## Usage
@ -625,6 +638,92 @@ vector_io:
- **`client_pem_path`**: Path to the **client certificate** file (required for mTLS).
- **`client_key_path`**: Path to the **client private key** file (required for mTLS).
## Search Modes
Milvus supports three different search modes for both inline and remote configurations:
### Vector Search
Vector search uses semantic similarity to find the most relevant chunks based on embedding vectors. This is the default search mode and works well for finding conceptually similar content.
```python
# Vector search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="What is machine learning?",
search_mode="vector",
max_num_results=5,
)
```
### Keyword Search
Keyword search uses traditional text-based matching to find chunks containing specific terms or phrases. This is useful when you need exact term matches.
```python
# Keyword search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="Python programming language",
search_mode="keyword",
max_num_results=5,
)
```
### Hybrid Search
Hybrid search combines both vector and keyword search methods to provide more comprehensive results. It leverages the strengths of both semantic similarity and exact term matching.
#### Basic Hybrid Search
```python
# Basic hybrid search example (uses RRF ranker with default impact_factor=60.0)
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
)
```
**Note**: The default `impact_factor` value of 60.0 was empirically determined to be optimal in the original RRF research paper: ["Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods"](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) (Cormack et al., 2009).
#### Hybrid Search with RRF (Reciprocal Rank Fusion) Ranker
RRF combines rankings from vector and keyword search by using reciprocal ranks. The impact factor controls how much weight is given to higher-ranked results.
```python
# Hybrid search with custom RRF parameters
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "rrf",
"impact_factor": 100.0, # Higher values give more weight to top-ranked results
}
},
)
```
#### Hybrid Search with Weighted Ranker
Weighted ranker linearly combines normalized scores from vector and keyword search. The alpha parameter controls the balance between the two search methods.
```python
# Hybrid search with weighted ranker
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "weighted",
"alpha": 0.7, # 70% vector search, 30% keyword search
}
},
)
```
For detailed documentation on RRF and Weighted rankers, please refer to the [Milvus Reranking Guide](https://milvus.io/docs/reranking.md).
## Documentation
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.

View file

@ -13,7 +13,9 @@ LLM_MODEL_IDS = [
"gemini-1.5-flash",
"gemini-1.5-pro",
"gemini-2.0-flash",
"gemini-2.0-flash-lite",
"gemini-2.5-flash",
"gemini-2.5-flash-lite",
"gemini-2.5-pro",
]

View file

@ -42,8 +42,8 @@ client.initialize()
### Create Completion
```python
response = client.completion(
model_id="meta-llama/Llama-3.1-8b-Instruct",
response = client.inference.completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
content="Complete the sentence using one word: Roses are red, violets are :",
stream=False,
sampling_params={
@ -56,8 +56,8 @@ print(f"Response: {response.content}")
### Create Chat Completion
```python
response = client.chat_completion(
model_id="meta-llama/Llama-3.1-8b-Instruct",
response = client.inference.chat_completion(
model_id="meta-llama/Llama-3.1-8B-Instruct",
messages=[
{
"role": "system",
@ -78,8 +78,10 @@ print(f"Response: {response.completion_message.content}")
### Create Embeddings
```python
response = client.embeddings(
model_id="meta-llama/Llama-3.1-8b-Instruct", contents=["foo", "bar", "baz"]
response = client.inference.embeddings(
model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
contents=["What is the capital of France?"],
task_type="query",
)
print(f"Embeddings: {response.embeddings}")
```
```

View file

@ -9,7 +9,9 @@ import contextvars
import logging
import queue
import random
import sys
import threading
import time
from collections.abc import Callable
from datetime import UTC, datetime
from functools import wraps
@ -30,6 +32,16 @@ from llama_stack.providers.utils.telemetry.trace_protocol import serialize_value
logger = get_logger(__name__, category="core")
# Fallback logger that does NOT propagate to TelemetryHandler to avoid recursion
_fallback_logger = logging.getLogger("llama_stack.telemetry.background")
if not _fallback_logger.handlers:
_fallback_logger.propagate = False
_fallback_logger.setLevel(logging.ERROR)
_fallback_handler = logging.StreamHandler(sys.stderr)
_fallback_handler.setLevel(logging.ERROR)
_fallback_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
_fallback_logger.addHandler(_fallback_handler)
INVALID_SPAN_ID = 0x0000000000000000
INVALID_TRACE_ID = 0x00000000000000000000000000000000
@ -79,19 +91,32 @@ def generate_trace_id() -> str:
CURRENT_TRACE_CONTEXT = contextvars.ContextVar("trace_context", default=None)
BACKGROUND_LOGGER = None
LOG_QUEUE_FULL_LOG_INTERVAL_SECONDS = 60.0
class BackgroundLogger:
def __init__(self, api: Telemetry, capacity: int = 100000):
self.api = api
self.log_queue = queue.Queue(maxsize=capacity)
self.log_queue: queue.Queue[Any] = queue.Queue(maxsize=capacity)
self.worker_thread = threading.Thread(target=self._process_logs, daemon=True)
self.worker_thread.start()
self._last_queue_full_log_time: float = 0.0
self._dropped_since_last_notice: int = 0
def log_event(self, event):
try:
self.log_queue.put_nowait(event)
except queue.Full:
logger.error("Log queue is full, dropping event")
# Aggregate drops and emit at most once per interval via fallback logger
self._dropped_since_last_notice += 1
current_time = time.time()
if current_time - self._last_queue_full_log_time >= LOG_QUEUE_FULL_LOG_INTERVAL_SECONDS:
_fallback_logger.error(
"Log queue is full; dropped %d events since last notice",
self._dropped_since_last_notice,
)
self._last_queue_full_log_time = current_time
self._dropped_since_last_notice = 0
def _process_logs(self):
while True: