fix(vector store)!: fix file content API (#4105)

# What does this PR do?
- changed to match
https://app.stainless.com/api/spec/documented/openai/openapi.documented.yml

## Test Plan
updated test CI
This commit is contained in:
ehhuang 2025-11-10 10:16:35 -08:00 committed by GitHub
parent 4341c4c2ac
commit d4ecbfd092
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 93 additions and 114 deletions

View file

@ -396,19 +396,19 @@ class VectorStoreListFilesResponse(BaseModel):
@json_schema_type
class VectorStoreFileContentsResponse(BaseModel):
"""Response from retrieving the contents of a vector store file.
class VectorStoreFileContentResponse(BaseModel):
"""Represents the parsed content of a vector store file.
:param file_id: Unique identifier for the file
:param filename: Name of the file
:param attributes: Key-value attributes associated with the file
:param content: List of content items from the file
:param object: The object type, which is always `vector_store.file_content.page`
:param data: Parsed content of the file
:param has_more: Indicates if there are more content pages to fetch
:param next_page: The token for the next page, if any
"""
file_id: str
filename: str
attributes: dict[str, Any]
content: list[VectorStoreContent]
object: Literal["vector_store.file_content.page"] = "vector_store.file_content.page"
data: list[VectorStoreContent]
has_more: bool
next_page: str | None = None
@json_schema_type
@ -732,12 +732,12 @@ class VectorIO(Protocol):
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
) -> VectorStoreFileContentResponse:
"""Retrieves the contents of a vector store file.
:param vector_store_id: The ID of the vector store containing the file to retrieve.
:param file_id: The ID of the file to retrieve.
:returns: A list of InterleavedContent representing the file contents.
:returns: A VectorStoreFileContentResponse representing the file contents.
"""
...

View file

@ -24,7 +24,7 @@ from llama_stack.apis.vector_io import (
VectorStoreChunkingStrategyStaticConfig,
VectorStoreDeleteResponse,
VectorStoreFileBatchObject,
VectorStoreFileContentsResponse,
VectorStoreFileContentResponse,
VectorStoreFileDeleteResponse,
VectorStoreFileObject,
VectorStoreFilesListInBatchResponse,
@ -338,7 +338,7 @@ class VectorIORouter(VectorIO):
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
) -> VectorStoreFileContentResponse:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_contents: {vector_store_id}, {file_id}")
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file_contents(

View file

@ -15,7 +15,7 @@ from llama_stack.apis.vector_io.vector_io import (
SearchRankingOptions,
VectorStoreChunkingStrategy,
VectorStoreDeleteResponse,
VectorStoreFileContentsResponse,
VectorStoreFileContentResponse,
VectorStoreFileDeleteResponse,
VectorStoreFileObject,
VectorStoreFileStatus,
@ -195,7 +195,7 @@ class VectorStoresRoutingTable(CommonRoutingTableImpl):
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
) -> VectorStoreFileContentResponse:
await self.assert_action_allowed("read", "vector_store", vector_store_id)
provider = await self.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file_contents(

View file

@ -30,7 +30,7 @@ from llama_stack.apis.vector_io import (
VectorStoreContent,
VectorStoreDeleteResponse,
VectorStoreFileBatchObject,
VectorStoreFileContentsResponse,
VectorStoreFileContentResponse,
VectorStoreFileCounts,
VectorStoreFileDeleteResponse,
VectorStoreFileLastError,
@ -921,22 +921,21 @@ class OpenAIVectorStoreMixin(ABC):
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
) -> VectorStoreFileContentResponse:
"""Retrieves the contents of a vector store file."""
if vector_store_id not in self.openai_vector_stores:
raise VectorStoreNotFoundError(vector_store_id)
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
content = []
for chunk in chunks:
content.extend(self._chunk_to_vector_store_content(chunk))
return VectorStoreFileContentsResponse(
file_id=file_id,
filename=file_info.get("filename", ""),
attributes=file_info.get("attributes", {}),
content=content,
return VectorStoreFileContentResponse(
object="vector_store.file_content.page",
data=content,
has_more=False,
next_page=None,
)
async def openai_update_vector_store_file(