OpenAI Responses - image support and multi-turn tool calling

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-04-18 09:13:48 -04:00 committed by Ashwin Bharambe
parent 35b2e2646f
commit d523c8692a
13 changed files with 186 additions and 34 deletions

View file

@ -19,6 +19,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::together`, `inline::sentence-transformers` |
| openai_responses | `inline::openai-responses` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |

View file

@ -80,6 +80,35 @@ class OpenAIResponseObjectStream(BaseModel):
type: Literal["response.created"] = "response.created"
@json_schema_type
class OpenAIResponseInputMessageContentText(BaseModel):
text: str
type: Literal["input_text"] = "input_text"
@json_schema_type
class OpenAIResponseInputMessageContentImage(BaseModel):
detail: Literal["low", "high", "auto"] = "auto"
type: Literal["input_image"] = "input_image"
# TODO: handle file_id
image_url: Optional[str] = None
# TODO: handle file content types
OpenAIResponseInputMessageContent = Annotated[
Union[OpenAIResponseInputMessageContentText, OpenAIResponseInputMessageContentImage],
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMessageContent")
@json_schema_type
class OpenAIResponseInputMessage(BaseModel):
content: Union[str, List[OpenAIResponseInputMessageContent]]
role: Literal["system", "developer", "user", "assistant"]
type: Optional[Literal["message"]] = "message"
@json_schema_type
class OpenAIResponseInputToolWebSearch(BaseModel):
type: Literal["web_search", "web_search_preview_2025_03_11"] = "web_search"
@ -109,7 +138,7 @@ class OpenAIResponses(Protocol):
@webmethod(route="/openai/v1/responses", method="POST")
async def create_openai_response(
self,
input: str,
input: Union[str, List[OpenAIResponseInputMessage]],
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,

View file

@ -6,7 +6,7 @@
import json
import uuid
from typing import AsyncIterator, List, Optional, cast
from typing import AsyncIterator, List, Optional, Union, cast
from openai.types.chat import ChatCompletionToolParam
@ -14,9 +14,12 @@ from llama_stack.apis.inference.inference import (
Inference,
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartParam,
OpenAIChatCompletionContentPartTextParam,
OpenAIChatCompletionToolCallFunction,
OpenAIChoice,
OpenAIImageURL,
OpenAIMessageParam,
OpenAIToolMessageParam,
OpenAIUserMessageParam,
@ -24,6 +27,9 @@ from llama_stack.apis.inference.inference import (
from llama_stack.apis.models.models import Models, ModelType
from llama_stack.apis.openai_responses import OpenAIResponses
from llama_stack.apis.openai_responses.openai_responses import (
OpenAIResponseInputMessage,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
OpenAIResponseObject,
OpenAIResponseObjectStream,
@ -106,13 +112,14 @@ class OpenAIResponsesImpl(OpenAIResponses):
async def create_openai_response(
self,
input: str,
input: Union[str, List[OpenAIResponseInputMessage]],
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
tools: Optional[List[OpenAIResponseInputTool]] = None,
):
stream = False if stream is None else stream
model_obj = await self.models_api.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
@ -123,13 +130,34 @@ class OpenAIResponsesImpl(OpenAIResponses):
if previous_response_id:
previous_response = await self.get_openai_response(previous_response_id)
messages.extend(await _previous_response_to_messages(previous_response))
messages.append(OpenAIUserMessageParam(content=input))
# TODO: refactor this user_content parsing out into a separate method
user_content: Union[str, List[OpenAIChatCompletionContentPartParam]] = ""
if isinstance(input, list):
user_content = []
for user_input in input:
if isinstance(user_input.content, list):
for user_input_content in user_input.content:
if isinstance(user_input_content, OpenAIResponseInputMessageContentText):
user_content.append(OpenAIChatCompletionContentPartTextParam(text=user_input_content.text))
elif isinstance(user_input_content, OpenAIResponseInputMessageContentImage):
if user_input_content.image_url:
image_url = OpenAIImageURL(
url=user_input_content.image_url, detail=user_input_content.detail
)
user_content.append(OpenAIChatCompletionContentPartImageParam(image_url=image_url))
else:
user_content.append(OpenAIChatCompletionContentPartTextParam(text=user_input.content))
else:
user_content = input
messages.append(OpenAIUserMessageParam(content=user_content))
chat_tools = await self._convert_response_tools_to_chat_tools(tools) if tools else None
# TODO: the code below doesn't handle streaming
chat_response = await self.inference_api.openai_chat_completion(
model=model_obj.identifier,
messages=messages,
tools=chat_tools,
stream=stream,
)
# type cast to appease mypy
chat_response = cast(OpenAIChatCompletion, chat_response)
@ -139,7 +167,7 @@ class OpenAIResponsesImpl(OpenAIResponses):
output_messages: List[OpenAIResponseOutput] = []
if chat_response.choices[0].finish_reason == "tool_calls":
output_messages.extend(
await self._execute_tool_and_return_final_output(model_obj.identifier, chat_response, messages)
await self._execute_tool_and_return_final_output(model_obj.identifier, stream, chat_response, messages)
)
else:
output_messages.extend(await _openai_choices_to_output_messages(chat_response.choices))
@ -198,7 +226,7 @@ class OpenAIResponsesImpl(OpenAIResponses):
return chat_tools
async def _execute_tool_and_return_final_output(
self, model_id: str, chat_response: OpenAIChatCompletion, messages: List[OpenAIMessageParam]
self, model_id: str, stream: bool, chat_response: OpenAIChatCompletion, messages: List[OpenAIMessageParam]
) -> List[OpenAIResponseOutput]:
output_messages: List[OpenAIResponseOutput] = []
choice = chat_response.choices[0]
@ -211,21 +239,21 @@ class OpenAIResponsesImpl(OpenAIResponses):
if not choice.message.tool_calls:
return output_messages
# TODO: handle multiple tool calls
function = choice.message.tool_calls[0].function
# Add the assistant message with tool_calls response to the messages list
messages.append(choice.message)
# If the tool call is not a function, we don't need to execute it
if not function:
# TODO: handle multiple tool calls
tool_call = choice.message.tool_calls[0]
tool_call_id = tool_call.id
function = tool_call.function
# If for some reason the tool call doesn't have a function or id, we can't execute it
if not function or not tool_call_id:
return output_messages
# TODO: telemetry spans for tool calls
result = await self._execute_tool_call(function)
tool_call_prefix = "tc_"
if function.name == "web_search":
tool_call_prefix = "ws_"
tool_call_id = f"{tool_call_prefix}{uuid.uuid4()}"
# Handle tool call failure
if not result:
output_messages.append(
@ -251,6 +279,7 @@ class OpenAIResponsesImpl(OpenAIResponses):
tool_results_chat_response = await self.inference_api.openai_chat_completion(
model=model_id,
messages=messages,
stream=stream,
)
# type cast to appease mypy
tool_results_chat_response = cast(OpenAIChatCompletion, tool_results_chat_response)

View file

@ -24,6 +24,8 @@ distribution_spec:
- inline::braintrust
telemetry:
- inline::meta-reference
openai_responses:
- inline::openai-responses
tool_runtime:
- remote::brave-search
- remote::tavily-search
@ -31,6 +33,4 @@ distribution_spec:
- inline::rag-runtime
- remote::model-context-protocol
- remote::wolfram-alpha
openai_responses:
- inline::openai-responses
image_type: conda

View file

@ -92,6 +92,14 @@ providers:
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/remote-vllm/trace_store.db}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
@ -116,14 +124,6 @@ providers:
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db

View file

@ -85,6 +85,14 @@ providers:
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/remote-vllm/trace_store.db}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
@ -109,14 +117,6 @@ providers:
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db

View file

@ -31,6 +31,7 @@ def get_distribution_template() -> DistributionTemplate:
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"telemetry": ["inline::meta-reference"],
"openai_responses": ["inline::openai-responses"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
@ -39,7 +40,6 @@ def get_distribution_template() -> DistributionTemplate:
"remote::model-context-protocol",
"remote::wolfram-alpha",
],
"openai_responses": ["inline::openai-responses"],
}
name = "remote-vllm"
inference_provider = Provider(

View file

@ -24,6 +24,8 @@ distribution_spec:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
openai_responses:
- inline::openai-responses
tool_runtime:
- remote::brave-search
- remote::tavily-search

View file

@ -5,6 +5,7 @@ apis:
- datasetio
- eval
- inference
- openai_responses
- safety
- scoring
- telemetry
@ -87,6 +88,14 @@ providers:
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/openai_responses.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search

View file

@ -5,6 +5,7 @@ apis:
- datasetio
- eval
- inference
- openai_responses
- safety
- scoring
- telemetry
@ -82,6 +83,14 @@ providers:
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/openai_responses.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search

View file

@ -36,6 +36,7 @@ def get_distribution_template() -> DistributionTemplate:
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"openai_responses": ["inline::openai-responses"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",

View file

@ -36,3 +36,66 @@ def test_web_search_non_streaming(openai_client, client_with_models, text_model_
assert response.output[1].role == "assistant"
assert len(response.output[1].content) > 0
assert expected.lower() in response.output_text.lower().strip()
def test_input_image_non_streaming(openai_client, vision_model_id):
supported_models = ["llama-4", "gpt-4o", "llama4"]
if not any(model in vision_model_id.lower() for model in supported_models):
pytest.skip(f"Skip for non-supported model: {vision_model_id}")
response = openai_client.with_options(max_retries=0).responses.create(
model=vision_model_id,
input=[
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "Identify the type of animal in this image.",
},
{
"type": "input_image",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg",
},
],
}
],
)
output_text = response.output_text.lower()
assert "llama" in output_text
def test_multi_turn_web_search_from_image_non_streaming(openai_client, vision_model_id):
supported_models = ["llama-4", "gpt-4o", "llama4"]
if not any(model in vision_model_id.lower() for model in supported_models):
pytest.skip(f"Skip for non-supported model: {vision_model_id}")
response = openai_client.with_options(max_retries=0).responses.create(
model=vision_model_id,
input=[
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "Extract a single search keyword that represents the type of animal in this image.",
},
{
"type": "input_image",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg",
},
],
}
],
)
output_text = response.output_text.lower()
assert "llama" in output_text
search_response = openai_client.with_options(max_retries=0).responses.create(
model=vision_model_id,
input="Search the web using the search tool for those keywords plus the words 'maverick' and 'scout' and summarize the results.",
previous_response_id=response.id,
tools=[{"type": "web_search"}],
)
output_text = search_response.output_text.lower()
assert "model" in output_text

View file

@ -2,6 +2,7 @@ version: '2'
image_name: openai-api-verification
apis:
- inference
- openai_responses
- telemetry
- tool_runtime
- vector_io
@ -45,6 +46,14 @@ providers:
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/openai/trace_store.db}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/openai}/openai_responses.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search