mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-30 23:51:00 +00:00
Works with ollama 0.4.0 pre-release with the vision model
This commit is contained in:
parent
03013dafc1
commit
d543eb442b
5 changed files with 137 additions and 57 deletions
|
@ -143,7 +143,6 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||||
params = self._get_params(request)
|
params = self._get_params(request)
|
||||||
|
|
||||||
if "messages" in params:
|
if "messages" in params:
|
||||||
print(f"Using chat completion endpoint: {params}")
|
|
||||||
stream = client.chat.completions.acreate(**params)
|
stream = client.chat.completions.acreate(**params)
|
||||||
else:
|
else:
|
||||||
stream = client.completion.acreate(**params)
|
stream = client.completion.acreate(**params)
|
||||||
|
|
|
@ -4,6 +4,8 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import base64
|
||||||
|
import io
|
||||||
from typing import AsyncGenerator
|
from typing import AsyncGenerator
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
|
@ -29,6 +31,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
||||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||||
chat_completion_request_to_prompt,
|
chat_completion_request_to_prompt,
|
||||||
completion_request_to_prompt,
|
completion_request_to_prompt,
|
||||||
|
request_has_media,
|
||||||
)
|
)
|
||||||
|
|
||||||
OLLAMA_SUPPORTED_MODELS = {
|
OLLAMA_SUPPORTED_MODELS = {
|
||||||
|
@ -38,6 +41,7 @@ OLLAMA_SUPPORTED_MODELS = {
|
||||||
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
|
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
|
||||||
"Llama-Guard-3-8B": "llama-guard3:8b",
|
"Llama-Guard-3-8B": "llama-guard3:8b",
|
||||||
"Llama-Guard-3-1B": "llama-guard3:1b",
|
"Llama-Guard-3-1B": "llama-guard3:1b",
|
||||||
|
"Llama3.2-11B-Vision-Instruct": "x/llama3.2-vision:11b-instruct-fp16",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -109,22 +113,8 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
else:
|
else:
|
||||||
return await self._nonstream_completion(request)
|
return await self._nonstream_completion(request)
|
||||||
|
|
||||||
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
|
||||||
sampling_options = get_sampling_options(request.sampling_params)
|
|
||||||
# This is needed since the Ollama API expects num_predict to be set
|
|
||||||
# for early truncation instead of max_tokens.
|
|
||||||
if sampling_options["max_tokens"] is not None:
|
|
||||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
|
||||||
return {
|
|
||||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
|
||||||
"prompt": completion_request_to_prompt(request, self.formatter),
|
|
||||||
"options": sampling_options,
|
|
||||||
"raw": True,
|
|
||||||
"stream": request.stream,
|
|
||||||
}
|
|
||||||
|
|
||||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
params = self._get_params_for_completion(request)
|
params = await self._get_params(request)
|
||||||
|
|
||||||
async def _generate_and_convert_to_openai_compat():
|
async def _generate_and_convert_to_openai_compat():
|
||||||
s = await self.client.generate(**params)
|
s = await self.client.generate(**params)
|
||||||
|
@ -142,7 +132,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
yield chunk
|
yield chunk
|
||||||
|
|
||||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
params = self._get_params_for_completion(request)
|
params = await self._get_params(request)
|
||||||
r = await self.client.generate(**params)
|
r = await self.client.generate(**params)
|
||||||
assert isinstance(r, dict)
|
assert isinstance(r, dict)
|
||||||
|
|
||||||
|
@ -183,26 +173,66 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
else:
|
else:
|
||||||
return await self._nonstream_chat_completion(request)
|
return await self._nonstream_chat_completion(request)
|
||||||
|
|
||||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
async def _get_params(
|
||||||
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||||
|
) -> dict:
|
||||||
|
sampling_options = get_sampling_options(request.sampling_params)
|
||||||
|
# This is needed since the Ollama API expects num_predict to be set
|
||||||
|
# for early truncation instead of max_tokens.
|
||||||
|
if sampling_options.get("max_tokens") is not None:
|
||||||
|
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||||
|
|
||||||
|
input_dict = {}
|
||||||
|
media_present = request_has_media(request)
|
||||||
|
if isinstance(request, ChatCompletionRequest):
|
||||||
|
if media_present:
|
||||||
|
contents = [
|
||||||
|
await convert_message_to_dict_for_ollama(m)
|
||||||
|
for m in request.messages
|
||||||
|
]
|
||||||
|
# flatten the list of lists
|
||||||
|
input_dict["messages"] = [
|
||||||
|
item for sublist in contents for item in sublist
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
input_dict["raw"] = True
|
||||||
|
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||||
|
request, self.formatter
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert (
|
||||||
|
not media_present
|
||||||
|
), "Ollama does not support media for Completion requests"
|
||||||
|
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||||
|
input_dict["raw"] = True
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
**input_dict,
|
||||||
"options": get_sampling_options(request.sampling_params),
|
"options": sampling_options,
|
||||||
"raw": True,
|
|
||||||
"stream": request.stream,
|
"stream": request.stream,
|
||||||
}
|
}
|
||||||
|
|
||||||
async def _nonstream_chat_completion(
|
async def _nonstream_chat_completion(
|
||||||
self, request: ChatCompletionRequest
|
self, request: ChatCompletionRequest
|
||||||
) -> ChatCompletionResponse:
|
) -> ChatCompletionResponse:
|
||||||
params = self._get_params(request)
|
params = await self._get_params(request)
|
||||||
r = await self.client.generate(**params)
|
if "messages" in params:
|
||||||
|
r = await self.client.chat(**params)
|
||||||
|
else:
|
||||||
|
r = await self.client.generate(**params)
|
||||||
assert isinstance(r, dict)
|
assert isinstance(r, dict)
|
||||||
|
|
||||||
choice = OpenAICompatCompletionChoice(
|
if "message" in r:
|
||||||
finish_reason=r["done_reason"] if r["done"] else None,
|
choice = OpenAICompatCompletionChoice(
|
||||||
text=r["response"],
|
finish_reason=r["done_reason"] if r["done"] else None,
|
||||||
)
|
text=r["message"]["content"],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
choice = OpenAICompatCompletionChoice(
|
||||||
|
finish_reason=r["done_reason"] if r["done"] else None,
|
||||||
|
text=r["response"],
|
||||||
|
)
|
||||||
response = OpenAICompatCompletionResponse(
|
response = OpenAICompatCompletionResponse(
|
||||||
choices=[choice],
|
choices=[choice],
|
||||||
)
|
)
|
||||||
|
@ -211,15 +241,24 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
async def _stream_chat_completion(
|
async def _stream_chat_completion(
|
||||||
self, request: ChatCompletionRequest
|
self, request: ChatCompletionRequest
|
||||||
) -> AsyncGenerator:
|
) -> AsyncGenerator:
|
||||||
params = self._get_params(request)
|
params = await self._get_params(request)
|
||||||
|
|
||||||
async def _generate_and_convert_to_openai_compat():
|
async def _generate_and_convert_to_openai_compat():
|
||||||
s = await self.client.generate(**params)
|
if "messages" in params:
|
||||||
|
s = await self.client.chat(**params)
|
||||||
|
else:
|
||||||
|
s = await self.client.generate(**params)
|
||||||
async for chunk in s:
|
async for chunk in s:
|
||||||
choice = OpenAICompatCompletionChoice(
|
if "message" in chunk:
|
||||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
choice = OpenAICompatCompletionChoice(
|
||||||
text=chunk["response"],
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||||
)
|
text=chunk["message"]["content"],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
choice = OpenAICompatCompletionChoice(
|
||||||
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||||
|
text=chunk["response"],
|
||||||
|
)
|
||||||
yield OpenAICompatCompletionResponse(
|
yield OpenAICompatCompletionResponse(
|
||||||
choices=[choice],
|
choices=[choice],
|
||||||
)
|
)
|
||||||
|
@ -236,3 +275,37 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
contents: List[InterleavedTextMedia],
|
contents: List[InterleavedTextMedia],
|
||||||
) -> EmbeddingsResponse:
|
) -> EmbeddingsResponse:
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
|
||||||
|
async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]:
|
||||||
|
async def _convert_content(content) -> dict:
|
||||||
|
if isinstance(content, ImageMedia):
|
||||||
|
return {
|
||||||
|
"role": message.role,
|
||||||
|
"images": [await convert_image_media_to_base64(content)],
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {
|
||||||
|
"role": message.role,
|
||||||
|
"content": content,
|
||||||
|
}
|
||||||
|
|
||||||
|
if isinstance(message.content, list):
|
||||||
|
return [await _convert_content(c) for c in message.content]
|
||||||
|
else:
|
||||||
|
return [await _convert_content(message.content)]
|
||||||
|
|
||||||
|
|
||||||
|
async def convert_image_media_to_base64(media: ImageMedia) -> str:
|
||||||
|
if isinstance(media.image, PIL_Image.Image):
|
||||||
|
bytestream = io.BytesIO()
|
||||||
|
media.image.save(bytestream, format=media.image.format)
|
||||||
|
bytestream.seek(0)
|
||||||
|
content = bytestream.getvalue()
|
||||||
|
else:
|
||||||
|
assert isinstance(media.image, URL)
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
r = await client.get(media.image.uri)
|
||||||
|
content = r.content
|
||||||
|
|
||||||
|
return base64.b64encode(content).decode("utf-8")
|
||||||
|
|
|
@ -19,12 +19,11 @@ def pytest_addoption(parser):
|
||||||
|
|
||||||
|
|
||||||
def pytest_configure(config):
|
def pytest_configure(config):
|
||||||
config.addinivalue_line(
|
for model in ["llama_8b", "llama_3b", "llama_vision"]:
|
||||||
"markers", "llama_8b: mark test to run only with the given model"
|
config.addinivalue_line(
|
||||||
)
|
"markers", f"{model}: mark test to run only with the given model"
|
||||||
config.addinivalue_line(
|
)
|
||||||
"markers", "llama_3b: mark test to run only with the given model"
|
|
||||||
)
|
|
||||||
for fixture_name in INFERENCE_FIXTURES:
|
for fixture_name in INFERENCE_FIXTURES:
|
||||||
config.addinivalue_line(
|
config.addinivalue_line(
|
||||||
"markers",
|
"markers",
|
||||||
|
@ -37,6 +36,14 @@ MODEL_PARAMS = [
|
||||||
pytest.param("Llama3.2-3B-Instruct", marks=pytest.mark.llama_3b, id="llama_3b"),
|
pytest.param("Llama3.2-3B-Instruct", marks=pytest.mark.llama_3b, id="llama_3b"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
VISION_MODEL_PARAMS = [
|
||||||
|
pytest.param(
|
||||||
|
"Llama3.2-11B-Vision-Instruct",
|
||||||
|
marks=pytest.mark.llama_vision,
|
||||||
|
id="llama_vision",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
def pytest_generate_tests(metafunc):
|
def pytest_generate_tests(metafunc):
|
||||||
if "inference_model" in metafunc.fixturenames:
|
if "inference_model" in metafunc.fixturenames:
|
||||||
|
@ -44,7 +51,11 @@ def pytest_generate_tests(metafunc):
|
||||||
if model:
|
if model:
|
||||||
params = [pytest.param(model, id="")]
|
params = [pytest.param(model, id="")]
|
||||||
else:
|
else:
|
||||||
params = MODEL_PARAMS
|
cls_name = metafunc.cls.__name__
|
||||||
|
if "Vision" in cls_name:
|
||||||
|
params = VISION_MODEL_PARAMS
|
||||||
|
else:
|
||||||
|
params = MODEL_PARAMS
|
||||||
|
|
||||||
metafunc.parametrize(
|
metafunc.parametrize(
|
||||||
"inference_model",
|
"inference_model",
|
||||||
|
|
|
@ -29,11 +29,6 @@ def inference_model(request):
|
||||||
return request.config.getoption("--inference-model", None)
|
return request.config.getoption("--inference-model", None)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
|
||||||
def vision_inference_model():
|
|
||||||
return "Llama3.2-11B-Vision-Instruct"
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def inference_remote() -> ProviderFixture:
|
def inference_remote() -> ProviderFixture:
|
||||||
return remote_stack_fixture()
|
return remote_stack_fixture()
|
||||||
|
|
|
@ -21,19 +21,20 @@ THIS_DIR = Path(__file__).parent
|
||||||
class TestVisionModelInference:
|
class TestVisionModelInference:
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_vision_chat_completion_non_streaming(
|
async def test_vision_chat_completion_non_streaming(
|
||||||
self, vision_inference_model, inference_stack
|
self, inference_model, inference_stack
|
||||||
):
|
):
|
||||||
inference_impl, _ = inference_stack
|
inference_impl, _ = inference_stack
|
||||||
|
|
||||||
provider = inference_impl.routing_table.get_provider_impl(
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||||
vision_inference_model
|
|
||||||
)
|
|
||||||
if provider.__provider_spec__.provider_type not in (
|
if provider.__provider_spec__.provider_type not in (
|
||||||
"meta-reference",
|
"meta-reference",
|
||||||
"remote::together",
|
"remote::together",
|
||||||
"remote::fireworks",
|
"remote::fireworks",
|
||||||
|
"remote::ollama",
|
||||||
):
|
):
|
||||||
pytest.skip("Other inference providers don't support completion() yet")
|
pytest.skip(
|
||||||
|
"Other inference providers don't support vision chat completion() yet"
|
||||||
|
)
|
||||||
|
|
||||||
images = [
|
images = [
|
||||||
ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")),
|
ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")),
|
||||||
|
@ -51,7 +52,7 @@ class TestVisionModelInference:
|
||||||
]
|
]
|
||||||
for image, expected_strings in zip(images, expected_strings_to_check):
|
for image, expected_strings in zip(images, expected_strings_to_check):
|
||||||
response = await inference_impl.chat_completion(
|
response = await inference_impl.chat_completion(
|
||||||
model=vision_inference_model,
|
model=inference_model,
|
||||||
messages=[
|
messages=[
|
||||||
SystemMessage(content="You are a helpful assistant."),
|
SystemMessage(content="You are a helpful assistant."),
|
||||||
UserMessage(
|
UserMessage(
|
||||||
|
@ -69,19 +70,20 @@ class TestVisionModelInference:
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_vision_chat_completion_streaming(
|
async def test_vision_chat_completion_streaming(
|
||||||
self, vision_inference_model, inference_stack
|
self, inference_model, inference_stack
|
||||||
):
|
):
|
||||||
inference_impl, _ = inference_stack
|
inference_impl, _ = inference_stack
|
||||||
|
|
||||||
provider = inference_impl.routing_table.get_provider_impl(
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||||
vision_inference_model
|
|
||||||
)
|
|
||||||
if provider.__provider_spec__.provider_type not in (
|
if provider.__provider_spec__.provider_type not in (
|
||||||
"meta-reference",
|
"meta-reference",
|
||||||
"remote::together",
|
"remote::together",
|
||||||
"remote::fireworks",
|
"remote::fireworks",
|
||||||
|
"remote::ollama",
|
||||||
):
|
):
|
||||||
pytest.skip("Other inference providers don't support completion() yet")
|
pytest.skip(
|
||||||
|
"Other inference providers don't support vision chat completion() yet"
|
||||||
|
)
|
||||||
|
|
||||||
images = [
|
images = [
|
||||||
ImageMedia(
|
ImageMedia(
|
||||||
|
@ -97,7 +99,7 @@ class TestVisionModelInference:
|
||||||
response = [
|
response = [
|
||||||
r
|
r
|
||||||
async for r in await inference_impl.chat_completion(
|
async for r in await inference_impl.chat_completion(
|
||||||
model=vision_inference_model,
|
model=inference_model,
|
||||||
messages=[
|
messages=[
|
||||||
SystemMessage(content="You are a helpful assistant."),
|
SystemMessage(content="You are a helpful assistant."),
|
||||||
UserMessage(
|
UserMessage(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue