mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
update tests to ignore with library client
This commit is contained in:
parent
f8b85c2176
commit
d54c58c8dd
1 changed files with 56 additions and 46 deletions
|
@ -34,6 +34,13 @@ def openai_client(client_with_models):
|
||||||
return OpenAI(base_url=base_url, api_key="fake")
|
return OpenAI(base_url=base_url, api_key="fake")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(params=["openai_client"]) # , "llama_stack_client"])
|
||||||
|
def compat_client(request, client_with_models):
|
||||||
|
if request.param == "openai_client" and isinstance(client_with_models, LlamaStackAsLibraryClient):
|
||||||
|
pytest.skip("OpenAI client tests not supported with library client")
|
||||||
|
return request.getfixturevalue(request.param)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def sample_chunks():
|
def sample_chunks():
|
||||||
return [
|
return [
|
||||||
|
@ -57,29 +64,29 @@ def sample_chunks():
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="function")
|
@pytest.fixture(scope="function")
|
||||||
def openai_client_with_empty_stores(openai_client):
|
def compat_client_with_empty_stores(compat_client):
|
||||||
def clear_vector_stores():
|
def clear_vector_stores():
|
||||||
# List and delete all existing vector stores
|
# List and delete all existing vector stores
|
||||||
try:
|
try:
|
||||||
response = openai_client.vector_stores.list()
|
response = compat_client.vector_stores.list()
|
||||||
for store in response.data:
|
for store in response.data:
|
||||||
openai_client.vector_stores.delete(vector_store_id=store.id)
|
compat_client.vector_stores.delete(vector_store_id=store.id)
|
||||||
except Exception:
|
except Exception:
|
||||||
# If the API is not available or fails, just continue
|
# If the API is not available or fails, just continue
|
||||||
logger.warning("Failed to clear vector stores")
|
logger.warning("Failed to clear vector stores")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
clear_vector_stores()
|
clear_vector_stores()
|
||||||
yield openai_client
|
yield compat_client
|
||||||
|
|
||||||
# Clean up after the test
|
# Clean up after the test
|
||||||
clear_vector_stores()
|
clear_vector_stores()
|
||||||
|
|
||||||
|
|
||||||
def test_openai_create_vector_store(openai_client_with_empty_stores, client_with_models):
|
def test_openai_create_vector_store(compat_client_with_empty_stores, client_with_models):
|
||||||
"""Test creating a vector store using OpenAI API."""
|
"""Test creating a vector store using OpenAI API."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
client = openai_client_with_empty_stores
|
client = compat_client_with_empty_stores
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
vector_store = client.vector_stores.create(
|
vector_store = client.vector_stores.create(
|
||||||
|
@ -96,11 +103,11 @@ def test_openai_create_vector_store(openai_client_with_empty_stores, client_with
|
||||||
assert hasattr(vector_store, "created_at")
|
assert hasattr(vector_store, "created_at")
|
||||||
|
|
||||||
|
|
||||||
def test_openai_list_vector_stores(openai_client_with_empty_stores, client_with_models):
|
def test_openai_list_vector_stores(compat_client_with_empty_stores, client_with_models):
|
||||||
"""Test listing vector stores using OpenAI API."""
|
"""Test listing vector stores using OpenAI API."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
client = openai_client_with_empty_stores
|
client = compat_client_with_empty_stores
|
||||||
|
|
||||||
# Create a few vector stores
|
# Create a few vector stores
|
||||||
store1 = client.vector_stores.create(name="store1", metadata={"type": "test"})
|
store1 = client.vector_stores.create(name="store1", metadata={"type": "test"})
|
||||||
|
@ -123,11 +130,11 @@ def test_openai_list_vector_stores(openai_client_with_empty_stores, client_with_
|
||||||
assert len(limited_response.data) == 1
|
assert len(limited_response.data) == 1
|
||||||
|
|
||||||
|
|
||||||
def test_openai_retrieve_vector_store(openai_client_with_empty_stores, client_with_models):
|
def test_openai_retrieve_vector_store(compat_client_with_empty_stores, client_with_models):
|
||||||
"""Test retrieving a specific vector store using OpenAI API."""
|
"""Test retrieving a specific vector store using OpenAI API."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
client = openai_client_with_empty_stores
|
client = compat_client_with_empty_stores
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
created_store = client.vector_stores.create(name="retrieve_test_store", metadata={"purpose": "retrieval_test"})
|
created_store = client.vector_stores.create(name="retrieve_test_store", metadata={"purpose": "retrieval_test"})
|
||||||
|
@ -142,11 +149,11 @@ def test_openai_retrieve_vector_store(openai_client_with_empty_stores, client_wi
|
||||||
assert retrieved_store.object == "vector_store"
|
assert retrieved_store.object == "vector_store"
|
||||||
|
|
||||||
|
|
||||||
def test_openai_update_vector_store(openai_client_with_empty_stores, client_with_models):
|
def test_openai_update_vector_store(compat_client_with_empty_stores, client_with_models):
|
||||||
"""Test modifying a vector store using OpenAI API."""
|
"""Test modifying a vector store using OpenAI API."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
client = openai_client_with_empty_stores
|
client = compat_client_with_empty_stores
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
created_store = client.vector_stores.create(name="original_name", metadata={"version": "1.0"})
|
created_store = client.vector_stores.create(name="original_name", metadata={"version": "1.0"})
|
||||||
|
@ -165,11 +172,11 @@ def test_openai_update_vector_store(openai_client_with_empty_stores, client_with
|
||||||
assert modified_store.last_active_at > created_store.last_active_at
|
assert modified_store.last_active_at > created_store.last_active_at
|
||||||
|
|
||||||
|
|
||||||
def test_openai_delete_vector_store(openai_client_with_empty_stores, client_with_models):
|
def test_openai_delete_vector_store(compat_client_with_empty_stores, client_with_models):
|
||||||
"""Test deleting a vector store using OpenAI API."""
|
"""Test deleting a vector store using OpenAI API."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
client = openai_client_with_empty_stores
|
client = compat_client_with_empty_stores
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
created_store = client.vector_stores.create(name="delete_test_store", metadata={"purpose": "deletion_test"})
|
created_store = client.vector_stores.create(name="delete_test_store", metadata={"purpose": "deletion_test"})
|
||||||
|
@ -187,11 +194,11 @@ def test_openai_delete_vector_store(openai_client_with_empty_stores, client_with
|
||||||
client.vector_stores.retrieve(vector_store_id=created_store.id)
|
client.vector_stores.retrieve(vector_store_id=created_store.id)
|
||||||
|
|
||||||
|
|
||||||
def test_openai_vector_store_search_empty(openai_client_with_empty_stores, client_with_models):
|
def test_openai_vector_store_search_empty(compat_client_with_empty_stores, client_with_models):
|
||||||
"""Test searching an empty vector store using OpenAI API."""
|
"""Test searching an empty vector store using OpenAI API."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
client = openai_client_with_empty_stores
|
client = compat_client_with_empty_stores
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
vector_store = client.vector_stores.create(name="search_test_store", metadata={"purpose": "search_testing"})
|
vector_store = client.vector_stores.create(name="search_test_store", metadata={"purpose": "search_testing"})
|
||||||
|
@ -208,15 +215,15 @@ def test_openai_vector_store_search_empty(openai_client_with_empty_stores, clien
|
||||||
assert search_response.has_more is False
|
assert search_response.has_more is False
|
||||||
|
|
||||||
|
|
||||||
def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client_with_models, sample_chunks):
|
def test_openai_vector_store_with_chunks(compat_client_with_empty_stores, client_with_models, sample_chunks):
|
||||||
"""Test vector store functionality with actual chunks using both OpenAI and native APIs."""
|
"""Test vector store functionality with actual chunks using both OpenAI and native APIs."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
openai_client = openai_client_with_empty_stores
|
compat_client = compat_client_with_empty_stores
|
||||||
llama_client = client_with_models
|
llama_client = client_with_models
|
||||||
|
|
||||||
# Create a vector store using OpenAI API
|
# Create a vector store using OpenAI API
|
||||||
vector_store = openai_client.vector_stores.create(name="chunks_test_store", metadata={"purpose": "chunks_testing"})
|
vector_store = compat_client.vector_stores.create(name="chunks_test_store", metadata={"purpose": "chunks_testing"})
|
||||||
|
|
||||||
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
|
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
|
||||||
llama_client.vector_io.insert(
|
llama_client.vector_io.insert(
|
||||||
|
@ -225,7 +232,7 @@ def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client
|
||||||
)
|
)
|
||||||
|
|
||||||
# Search using OpenAI API
|
# Search using OpenAI API
|
||||||
search_response = openai_client.vector_stores.search(
|
search_response = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id, query="What is Python programming language?", max_num_results=3
|
vector_store_id=vector_store.id, query="What is Python programming language?", max_num_results=3
|
||||||
)
|
)
|
||||||
assert search_response is not None
|
assert search_response is not None
|
||||||
|
@ -233,18 +240,19 @@ def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client
|
||||||
|
|
||||||
# The top result should be about Python (doc1)
|
# The top result should be about Python (doc1)
|
||||||
top_result = search_response.data[0]
|
top_result = search_response.data[0]
|
||||||
assert "python" in top_result.content.lower() or "programming" in top_result.content.lower()
|
top_content = top_result.content[0].text
|
||||||
assert top_result.metadata["document_id"] == "doc1"
|
assert "python" in top_content.lower() or "programming" in top_content.lower()
|
||||||
|
assert top_result.attributes["document_id"] == "doc1"
|
||||||
|
|
||||||
# Test filtering by metadata
|
# Test filtering by metadata
|
||||||
filtered_search = openai_client.vector_stores.search(
|
filtered_search = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id, query="artificial intelligence", filters={"topic": "ai"}, max_num_results=5
|
vector_store_id=vector_store.id, query="artificial intelligence", filters={"topic": "ai"}, max_num_results=5
|
||||||
)
|
)
|
||||||
|
|
||||||
assert filtered_search is not None
|
assert filtered_search is not None
|
||||||
# All results should have topic "ai"
|
# All results should have topic "ai"
|
||||||
for result in filtered_search.data:
|
for result in filtered_search.data:
|
||||||
assert result.metadata["topic"] == "ai"
|
assert result.attributes["topic"] == "ai"
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
|
@ -257,18 +265,18 @@ def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def test_openai_vector_store_search_relevance(
|
def test_openai_vector_store_search_relevance(
|
||||||
openai_client_with_empty_stores, client_with_models, sample_chunks, test_case
|
compat_client_with_empty_stores, client_with_models, sample_chunks, test_case
|
||||||
):
|
):
|
||||||
"""Test that OpenAI vector store search returns relevant results for different queries."""
|
"""Test that OpenAI vector store search returns relevant results for different queries."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
openai_client = openai_client_with_empty_stores
|
compat_client = compat_client_with_empty_stores
|
||||||
llama_client = client_with_models
|
llama_client = client_with_models
|
||||||
|
|
||||||
query, expected_doc_id, expected_topic = test_case
|
query, expected_doc_id, expected_topic = test_case
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
vector_store = openai_client.vector_stores.create(
|
vector_store = compat_client.vector_stores.create(
|
||||||
name=f"relevance_test_{expected_doc_id}", metadata={"purpose": "relevance_testing"}
|
name=f"relevance_test_{expected_doc_id}", metadata={"purpose": "relevance_testing"}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -279,7 +287,7 @@ def test_openai_vector_store_search_relevance(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Search using OpenAI API
|
# Search using OpenAI API
|
||||||
search_response = openai_client.vector_stores.search(
|
search_response = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id, query=query, max_num_results=4
|
vector_store_id=vector_store.id, query=query, max_num_results=4
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -288,8 +296,9 @@ def test_openai_vector_store_search_relevance(
|
||||||
|
|
||||||
# The top result should match the expected document
|
# The top result should match the expected document
|
||||||
top_result = search_response.data[0]
|
top_result = search_response.data[0]
|
||||||
assert top_result.metadata["document_id"] == expected_doc_id
|
|
||||||
assert top_result.metadata["topic"] == expected_topic
|
assert top_result.attributes["document_id"] == expected_doc_id
|
||||||
|
assert top_result.attributes["topic"] == expected_topic
|
||||||
|
|
||||||
# Verify score is included and reasonable
|
# Verify score is included and reasonable
|
||||||
assert isinstance(top_result.score, int | float)
|
assert isinstance(top_result.score, int | float)
|
||||||
|
@ -297,16 +306,16 @@ def test_openai_vector_store_search_relevance(
|
||||||
|
|
||||||
|
|
||||||
def test_openai_vector_store_search_with_ranking_options(
|
def test_openai_vector_store_search_with_ranking_options(
|
||||||
openai_client_with_empty_stores, client_with_models, sample_chunks
|
compat_client_with_empty_stores, client_with_models, sample_chunks
|
||||||
):
|
):
|
||||||
"""Test OpenAI vector store search with ranking options."""
|
"""Test OpenAI vector store search with ranking options."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
openai_client = openai_client_with_empty_stores
|
compat_client = compat_client_with_empty_stores
|
||||||
llama_client = client_with_models
|
llama_client = client_with_models
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
vector_store = openai_client.vector_stores.create(
|
vector_store = compat_client.vector_stores.create(
|
||||||
name="ranking_test_store", metadata={"purpose": "ranking_testing"}
|
name="ranking_test_store", metadata={"purpose": "ranking_testing"}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -318,7 +327,7 @@ def test_openai_vector_store_search_with_ranking_options(
|
||||||
|
|
||||||
# Search with ranking options
|
# Search with ranking options
|
||||||
threshold = 0.1
|
threshold = 0.1
|
||||||
search_response = openai_client.vector_stores.search(
|
search_response = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id,
|
vector_store_id=vector_store.id,
|
||||||
query="machine learning and artificial intelligence",
|
query="machine learning and artificial intelligence",
|
||||||
max_num_results=3,
|
max_num_results=3,
|
||||||
|
@ -334,16 +343,16 @@ def test_openai_vector_store_search_with_ranking_options(
|
||||||
|
|
||||||
|
|
||||||
def test_openai_vector_store_search_with_high_score_filter(
|
def test_openai_vector_store_search_with_high_score_filter(
|
||||||
openai_client_with_empty_stores, client_with_models, sample_chunks
|
compat_client_with_empty_stores, client_with_models, sample_chunks
|
||||||
):
|
):
|
||||||
"""Test that searching with text very similar to a document and high score threshold returns only that document."""
|
"""Test that searching with text very similar to a document and high score threshold returns only that document."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
openai_client = openai_client_with_empty_stores
|
compat_client = compat_client_with_empty_stores
|
||||||
llama_client = client_with_models
|
llama_client = client_with_models
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
vector_store = openai_client.vector_stores.create(
|
vector_store = compat_client.vector_stores.create(
|
||||||
name="high_score_filter_test", metadata={"purpose": "high_score_filtering"}
|
name="high_score_filter_test", metadata={"purpose": "high_score_filtering"}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -358,7 +367,7 @@ def test_openai_vector_store_search_with_high_score_filter(
|
||||||
query = "Python is a high-level programming language with code readability and fewer lines than C++ or Java"
|
query = "Python is a high-level programming language with code readability and fewer lines than C++ or Java"
|
||||||
|
|
||||||
# picking up thrshold to be slightly higher than the second result
|
# picking up thrshold to be slightly higher than the second result
|
||||||
search_response = openai_client.vector_stores.search(
|
search_response = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id,
|
vector_store_id=vector_store.id,
|
||||||
query=query,
|
query=query,
|
||||||
max_num_results=3,
|
max_num_results=3,
|
||||||
|
@ -367,7 +376,7 @@ def test_openai_vector_store_search_with_high_score_filter(
|
||||||
threshold = search_response.data[1].score + 0.0001
|
threshold = search_response.data[1].score + 0.0001
|
||||||
|
|
||||||
# we expect only one result with the requested threshold
|
# we expect only one result with the requested threshold
|
||||||
search_response = openai_client.vector_stores.search(
|
search_response = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id,
|
vector_store_id=vector_store.id,
|
||||||
query=query,
|
query=query,
|
||||||
max_num_results=10, # Allow more results but expect filtering
|
max_num_results=10, # Allow more results but expect filtering
|
||||||
|
@ -379,25 +388,26 @@ def test_openai_vector_store_search_with_high_score_filter(
|
||||||
|
|
||||||
# The top result should be the Python document (doc1)
|
# The top result should be the Python document (doc1)
|
||||||
top_result = search_response.data[0]
|
top_result = search_response.data[0]
|
||||||
assert top_result.metadata["document_id"] == "doc1"
|
assert top_result.attributes["document_id"] == "doc1"
|
||||||
assert top_result.metadata["topic"] == "programming"
|
assert top_result.attributes["topic"] == "programming"
|
||||||
assert top_result.score >= threshold
|
assert top_result.score >= threshold
|
||||||
|
|
||||||
# Verify the content contains Python-related terms
|
# Verify the content contains Python-related terms
|
||||||
assert "python" in top_result.content.lower() or "programming" in top_result.content.lower()
|
top_content = top_result.content[0].text
|
||||||
|
assert "python" in top_content.lower() or "programming" in top_content.lower()
|
||||||
|
|
||||||
|
|
||||||
def test_openai_vector_store_search_with_max_num_results(
|
def test_openai_vector_store_search_with_max_num_results(
|
||||||
openai_client_with_empty_stores, client_with_models, sample_chunks
|
compat_client_with_empty_stores, client_with_models, sample_chunks
|
||||||
):
|
):
|
||||||
"""Test OpenAI vector store search with max_num_results."""
|
"""Test OpenAI vector store search with max_num_results."""
|
||||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||||
|
|
||||||
openai_client = openai_client_with_empty_stores
|
compat_client = compat_client_with_empty_stores
|
||||||
llama_client = client_with_models
|
llama_client = client_with_models
|
||||||
|
|
||||||
# Create a vector store
|
# Create a vector store
|
||||||
vector_store = openai_client.vector_stores.create(
|
vector_store = compat_client.vector_stores.create(
|
||||||
name="max_num_results_test_store", metadata={"purpose": "max_num_results_testing"}
|
name="max_num_results_test_store", metadata={"purpose": "max_num_results_testing"}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -408,7 +418,7 @@ def test_openai_vector_store_search_with_max_num_results(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Search with max_num_results
|
# Search with max_num_results
|
||||||
search_response = openai_client.vector_stores.search(
|
search_response = compat_client.vector_stores.search(
|
||||||
vector_store_id=vector_store.id,
|
vector_store_id=vector_store.id,
|
||||||
query="machine learning and artificial intelligence",
|
query="machine learning and artificial intelligence",
|
||||||
max_num_results=2,
|
max_num_results=2,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue