feat(vector-io): configurable embedding models for all providers (v2)\n\nAdds embedding_model and embedding_dimension fields to all VectorIOConfig classes.\nRouter respects provider defaults with fallback.\nIntroduces embedding_utils helper.\nComprehensive docs & samples.\nResolves #2729

This commit is contained in:
skamenan7 2025-07-17 11:51:40 -04:00
parent c8f274347d
commit d55dd3e9a0
24 changed files with 482 additions and 14 deletions

View file

@ -0,0 +1,180 @@
# Vector IO Embedding Model Configuration
This guide explains how to configure embedding models for vector IO providers in Llama Stack, enabling you to use different embedding models for different use cases and optimize performance and storage requirements.
## Overview
Vector IO providers now support configurable embedding models at the provider level. This allows you to:
- **Use different embedding models** for different vector databases based on your use case
- **Optimize for performance** with lightweight models for fast retrieval
- **Optimize for quality** with high-dimensional models for semantic search
- **Save storage space** with variable-dimension embeddings (Matryoshka embeddings)
- **Ensure consistency** with provider-level defaults
## Configuration Options
Each vector IO provider configuration can include:
- `embedding_model`: The default embedding model ID to use for this provider
- `embedding_dimension`: Optional dimension override for models with variable dimensions
## Priority Order
The system uses the following priority order for embedding model selection:
1. **Explicit API parameters** (highest priority)
2. **Provider configuration defaults** (new feature)
3. **System default** from model registry (fallback)
## Example Configurations
### Fast Local Search with Lightweight Embeddings
```yaml
vector_io:
- provider_id: fast_search
provider_type: inline::faiss
config:
db_path: ~/.llama/faiss_fast.db
embedding_model: "all-MiniLM-L6-v2" # Fast, 384-dimensional
embedding_dimension: 384
```
### High-Quality Semantic Search
```yaml
vector_io:
- provider_id: quality_search
provider_type: inline::sqlite_vec
config:
db_path: ~/.llama/sqlite_quality.db
embedding_model: "sentence-transformers/all-mpnet-base-v2" # High quality, 768-dimensional
embedding_dimension: 768
```
### Storage-Optimized with Matryoshka Embeddings
```yaml
vector_io:
- provider_id: compact_search
provider_type: inline::faiss
config:
db_path: ~/.llama/faiss_compact.db
embedding_model: "nomic-embed-text" # Matryoshka model
embedding_dimension: 256 # Reduced from default 768 for storage efficiency
```
### Cloud Deployment with OpenAI Embeddings
```yaml
vector_io:
- provider_id: cloud_search
provider_type: remote::qdrant
config:
api_key: "${env.QDRANT_API_KEY}"
url: "${env.QDRANT_URL}"
embedding_model: "text-embedding-3-small"
embedding_dimension: 1536
```
## Model Registry Setup
Ensure your embedding models are properly configured in the model registry:
```yaml
models:
# Lightweight model
- model_id: all-MiniLM-L6-v2
provider_id: local_inference
provider_model_id: sentence-transformers/all-MiniLM-L6-v2
model_type: embedding
metadata:
embedding_dimension: 384
description: "Fast, lightweight embeddings"
# High-quality model
- model_id: sentence-transformers/all-mpnet-base-v2
provider_id: local_inference
provider_model_id: sentence-transformers/all-mpnet-base-v2
model_type: embedding
metadata:
embedding_dimension: 768
description: "High-quality embeddings"
# Matryoshka model
- model_id: nomic-embed-text
provider_id: local_inference
provider_model_id: nomic-embed-text
model_type: embedding
metadata:
embedding_dimension: 768 # Default dimension
description: "Variable-dimension Matryoshka embeddings"
```
## Use Cases
### Multi-Environment Setup
Configure different providers for different environments:
```yaml
vector_io:
# Development - fast, lightweight
- provider_id: dev_search
provider_type: inline::faiss
config:
db_path: ~/.llama/dev_faiss.db
embedding_model: "all-MiniLM-L6-v2"
embedding_dimension: 384
# Production - high quality, scalable
- provider_id: prod_search
provider_type: remote::qdrant
config:
api_key: "${env.QDRANT_API_KEY}"
embedding_model: "text-embedding-3-large"
embedding_dimension: 3072
```
### Domain-Specific Models
Use different models for different content types:
```yaml
vector_io:
# Code search - specialized model
- provider_id: code_search
provider_type: inline::sqlite_vec
config:
db_path: ~/.llama/code_vectors.db
embedding_model: "microsoft/codebert-base"
embedding_dimension: 768
# General documents - general-purpose model
- provider_id: doc_search
provider_type: inline::sqlite_vec
config:
db_path: ~/.llama/doc_vectors.db
embedding_model: "all-mpnet-base-v2"
embedding_dimension: 768
```
## Backward Compatibility
If no embedding model is specified in the provider configuration, the system will fall back to the existing behavior of using the first available embedding model from the model registry.
## Supported Providers
The configurable embedding models feature is supported by:
- **Inline providers**: Faiss, SQLite-vec, Milvus, ChromaDB, Qdrant
- **Remote providers**: Qdrant, Milvus, ChromaDB, PGVector, Weaviate
## Best Practices
1. **Match dimensions**: Ensure `embedding_dimension` matches your model's output
2. **Use variable dimensions wisely**: Only override dimensions for Matryoshka models that support it
3. **Consider performance trade-offs**: Smaller dimensions = faster search, larger = better quality
4. **Test configurations**: Validate your setup with sample queries before production use
5. **Document your choices**: Comment your configurations to explain model selection rationale