mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 16:54:42 +00:00
temp commit
This commit is contained in:
parent
900b0556e7
commit
d7598c68d7
6 changed files with 491 additions and 3 deletions
|
@ -16,6 +16,7 @@ from pydantic import BaseModel, Field
|
|||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.datasets import * # noqa: F403
|
||||
from llama_stack.apis.common.training_types import * # noqa: F403
|
||||
import torch
|
||||
|
||||
|
||||
class OptimizerType(Enum):
|
||||
|
@ -30,18 +31,22 @@ class OptimizerConfig(BaseModel):
|
|||
lr: float
|
||||
lr_min: float
|
||||
weight_decay: float
|
||||
num_warmup_steps: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainingConfig(BaseModel):
|
||||
dtype: torch.dtype
|
||||
n_epochs: int
|
||||
max_steps_per_epoch: int
|
||||
gradient_accumulation_steps: int
|
||||
batch_size: int
|
||||
shuffle: bool
|
||||
n_iters: int
|
||||
# n_iters: int
|
||||
|
||||
enable_activation_checkpointing: bool
|
||||
memory_efficient_fsdp_wrap: bool
|
||||
fsdp_cpu_offload: bool
|
||||
memory_efficient_fsdp_wrap: Optional[bool]
|
||||
fsdp_cpu_offload: Optional[bool]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
from pydantic import BaseModel, Field,
|
||||
|
||||
|
||||
class MetaReferencePostTrainingConfig(BaseModel):
|
||||
model: str = Field(
|
||||
default="Llama3.2-3B-Instruct",
|
||||
description="Model descriptor from `llama model list`",
|
||||
)
|
||||
torch_seed: Optional[int] = None
|
||||
# By default, the implementation will look at ~/.llama/checkpoints/<model> but you
|
||||
# can override by specifying the directory explicitly
|
||||
checkpoint_dir: Optional[str] = None
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Any, Callable, Dict, List, Mapping, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import Dataset
|
||||
from torchtune.data._common import CROSS_ENTROPY_IGNORE_IDX
|
||||
from torchtune.data._messages import validate_messages
|
||||
from torchtune.modules.transforms import Transform
|
||||
|
||||
|
||||
class SFTDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
rows: List[Dict[str, Any]],
|
||||
message_transform: Transform,
|
||||
model_transform: Transform,
|
||||
) -> None:
|
||||
self._rows = rows
|
||||
self._message_transform = message_transform
|
||||
self._model_transform = model_transform
|
||||
|
||||
def __len__(self):
|
||||
return len(self._rows)
|
||||
|
||||
def __getitem__(self, index: int) -> Dict[str, Any]:
|
||||
sample = self._rows[index]
|
||||
return self._prepare_sample(sample)
|
||||
|
||||
def _prepare_sample(self, sample: Mapping[str, Any]) -> Dict[str, Any]:
|
||||
transformed_sample = self._message_transform(sample)
|
||||
if "messages" in transformed_sample:
|
||||
validate_messages(transformed_sample["messages"])
|
||||
|
||||
tokenized_dict = self._model_transform(transformed_sample)
|
||||
|
||||
if not ("tokens" in tokenized_dict and "mask" in tokenized_dict):
|
||||
keys_str = ", ".join(tokenized_dict.keys())
|
||||
error_message = (
|
||||
"model_transform returned the following keys: "
|
||||
f"{keys_str}. Must return 'tokens' and 'mask' as keys."
|
||||
)
|
||||
raise ValueError(error_message)
|
||||
|
||||
# Wherever mask == True, set to CROSS_ENTROPY_IGNORE_IDX. Otherwise keep as tokens
|
||||
tokenized_dict["labels"] = list(
|
||||
np.where(
|
||||
tokenized_dict["mask"],
|
||||
CROSS_ENTROPY_IGNORE_IDX,
|
||||
tokenized_dict["tokens"],
|
||||
)
|
||||
)
|
||||
assert len(tokenized_dict["tokens"]) == len(tokenized_dict["labels"])
|
||||
|
||||
return tokenized_dict
|
|
@ -0,0 +1,33 @@
|
|||
class MetaReferencePostTrainingImpl:
|
||||
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
model: str,
|
||||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: FinetuningAlgorithm,
|
||||
algorithm_config: LoraFinetuningConfig,
|
||||
optimizer_config: OptimizerConfig,
|
||||
training_config: TrainingConfig,
|
||||
logger_config: Dict[str, Any],
|
||||
) -> PostTrainingJob:
|
||||
# wrapper request to make it easier to pass around (internal only, not exposed to API)
|
||||
request = PostTrainingSFTRequest(
|
||||
job_uuid=job_uuid,
|
||||
model=model,
|
||||
dataset_id=dataset_id,
|
||||
validation_dataset_id=validation_dataset_id,
|
||||
algorithm=algorithm,
|
||||
algorithm_config=algorithm_config,
|
||||
optimizer_config=optimizer_config,
|
||||
training_config=training_config,
|
||||
logger_config=logger_config,
|
||||
)
|
||||
if request.algorithm == FinetuningAlgorithm.lora:
|
||||
recipe = LoraFinetuningRecipeSingleDevice(self.config, request)
|
||||
recipe.train()
|
||||
else:
|
||||
raise NotImplementedError()
|
|
@ -0,0 +1,325 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import logging
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from llama_stack.providers.inline.post_training.meta_reference import utils
|
||||
from llama_stack.providers.inline.post_training.meta_reference.configs import (
|
||||
MetaReferencePostTrainingConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.post_training.meta_reference.datasets.sft import (
|
||||
SFTDataset,
|
||||
)
|
||||
from torch.optim import Optimizer
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
from torchtune import modules, training
|
||||
from torchtune.data import InputOutputToMessages, padded_collate_sft
|
||||
|
||||
from torchtune.modules.loss import CEWithChunkedOutputLoss
|
||||
from torchtune.modules.peft import (
|
||||
get_adapter_params,
|
||||
get_adapter_state_dict,
|
||||
get_lora_module_names,
|
||||
get_merged_lora_ckpt,
|
||||
load_dora_magnitudes,
|
||||
set_trainable_params,
|
||||
validate_missing_and_unexpected_for_lora,
|
||||
)
|
||||
from torchtune.training.lr_scheduler import get_cosine_schedule_with_warmup
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
Tokenizer = Union[Llama3Tokenizer]
|
||||
|
||||
|
||||
class LoraFinetuningSingleDevice:
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferencePostTrainingConfig,
|
||||
request: PostTrainingSFTRequest,
|
||||
datasetio_api: DatasetIOAPI,
|
||||
) -> None:
|
||||
# to make user config easier, assume the device is 'cuda' only
|
||||
# self._device = utils.get_device(device=cfg.device)
|
||||
self.config = config
|
||||
self.request = request
|
||||
self._device = "cuda"
|
||||
self._dtype = training.get_dtype(
|
||||
request.training_config.dtype, device=self._device
|
||||
)
|
||||
self.model_id = request.model
|
||||
|
||||
# hardcode it for now and see how it works with get_training_job_artifacts
|
||||
self._output_dir = f"~/.llama/checkpoints/post_training/{request.model_id}"
|
||||
|
||||
self._log_every_n_steps = 1
|
||||
self._log_peak_memory_stats = False
|
||||
|
||||
self.seed = training.set_seed(seed=config.torch_seed or 42)
|
||||
self.epochs_run = 0
|
||||
self.total_epochs = request.training_config.n_epochs
|
||||
self._shuffle = request.training_config.shuffle
|
||||
self._batch_size = request.training_config.batch_size
|
||||
|
||||
# this is important for debugging purpose
|
||||
self.max_steps_per_epoch = request.training_config.max_steps_per_epoch
|
||||
self.global_step = 0
|
||||
|
||||
# not needed in MVP
|
||||
# self._resume_from_checkpoint = cfg.resume_from_checkpoint
|
||||
# self._save_adapter_weights_only = cfg.get("save_adapter_weights_only", False)
|
||||
|
||||
self._gradient_accumulation_steps = (
|
||||
request.training_config.gradient_accumulation_steps
|
||||
)
|
||||
|
||||
self._clip_grad_norm = 1.0 # hardcode
|
||||
self._enable_activation_checkpointing = (
|
||||
request.training_config.enable_activation_checkpointing
|
||||
)
|
||||
self._enable_activation_offloading = False
|
||||
|
||||
self.datasetio_api = datasetio_api
|
||||
|
||||
def load_checkpoint(self):
|
||||
def get_checkpoint_files(checkpoint_dir: str) -> List[str]:
|
||||
try:
|
||||
# List all files in the given directory
|
||||
files = os.listdir(checkpoint_dir)
|
||||
|
||||
# Filter files that end with .pth
|
||||
pth_files = [file for file in files if file.endswith(".pth")]
|
||||
return pth_files
|
||||
except FileNotFoundError:
|
||||
return f"Error: The directory '{checkpoint_dir}' does not exist."
|
||||
|
||||
self._checkpointer = training.FullModelMetaCheckpointer(
|
||||
checkpoint_dir=self.config.checkpoint_dir,
|
||||
checkpoint_files=get_checkpoint_files,
|
||||
output_dir=self._output_dir,
|
||||
# todo: automatically get this info from model
|
||||
model_type="LLAMA3",
|
||||
)
|
||||
checkpoint_dict = self._checkpointer.load_checkpoint()
|
||||
return checkpoint_dict
|
||||
|
||||
def setup(self, config: MetaReferencePostTrainingConfig) -> None:
|
||||
# todo: figure out how does it works with telemetry
|
||||
# self._metric_logger = config.instantiate(cfg.metric_logger)
|
||||
# self._metric_logger.log_config(cfg)
|
||||
|
||||
checkpoint_dict = self.load_checkpoint()
|
||||
|
||||
# hack to toggle to the low cpu ram version of the reparametrize_as_dtype
|
||||
# hook based on the config.
|
||||
# common_utils._use_low_cpu_ram = cfg.get("low_cpu_ram", False)
|
||||
|
||||
# set up model
|
||||
self._model = self._setup_model(
|
||||
enable_activation_checkpointing=self._enable_activation_checkpointing,
|
||||
enable_activation_offloading=self._enable_activation_offloading,
|
||||
base_model_state_dict=checkpoint_dict[training.MODEL_KEY],
|
||||
lora_weights_state_dict=None,
|
||||
)
|
||||
|
||||
self._tokenizer = self._setup_tokenizer()
|
||||
log.info("Tokenizer is initialized from file.")
|
||||
|
||||
self._optimizer = self._setup_optimizer(
|
||||
optimizer_config=self.request.training_config.optimizer, opt_state_dict=None
|
||||
)
|
||||
|
||||
self._loss_fn = CEWithChunkedOutputLoss()
|
||||
self._sampler, self._dataloader = self._setup_data(
|
||||
tokenizer=self._tokenizer,
|
||||
shuffle=self._shuffle,
|
||||
batch_size=self._batch_size,
|
||||
)
|
||||
|
||||
# Number of training steps in each epoch depends on the number of batches produced
|
||||
# by the dataloader and the max_steps_per_epoch param set by the user and is used
|
||||
# for logging and tracking training state. This should be computed after the dataloader
|
||||
# has been setup
|
||||
self._steps_per_epoch = (
|
||||
len(self._dataloader) // self._gradient_accumulation_steps
|
||||
)
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and self.max_steps_per_epoch < self._steps_per_epoch
|
||||
):
|
||||
self._steps_per_epoch = self.max_steps_per_epoch
|
||||
self.global_step = self.epochs_run * self._steps_per_epoch
|
||||
|
||||
# Learning rate scheduler can only be set up after number of steps
|
||||
# has been computed
|
||||
self._lr_scheduler = self._setup_lr_scheduler(
|
||||
num_warmup_steps=self.request.optimizer_config.num_warmup_steps,
|
||||
num_training_steps=self.total_epochs * self._steps_per_epoch,
|
||||
last_epoch=self.global_step - 1,
|
||||
)
|
||||
|
||||
# Used to ignore labels for loss computation
|
||||
self.ignore_labels_cache = torch.full(
|
||||
(self._batch_size, 1), self._loss_fn.ignore_index, device=self._device
|
||||
)
|
||||
|
||||
def _setup_model(
|
||||
self,
|
||||
enable_activation_checkpointing: bool,
|
||||
enable_activation_offloading: bool,
|
||||
base_model_state_dict: Dict[str, Any],
|
||||
lora_weights_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> nn.Module:
|
||||
self._lora_rank = self.request.algorithm_config.rank
|
||||
self._lora_alpha = self.request.algorithm_config.alpha
|
||||
self._lora_attn_modules = list(self.request.algorithm_config.lora_attn_modules)
|
||||
self._apply_lora_to_mlp = self.request.algorithm_config.apply_lora_to_mlp
|
||||
self._apply_lora_to_output = self.request.algorithm_config.apply_lora_to_output
|
||||
self._use_dora = self.request.algorithm_config.use_dora
|
||||
|
||||
with training.set_default_dtype(self._dtype), self._device:
|
||||
model_type = utils.get_model_type(self.model_id)
|
||||
model = model_type(
|
||||
lora_attn_modules=self._lora_attn_modules,
|
||||
apply_lora_to_mlp=self._apply_lora_to_mlp,
|
||||
apply_lora_to_output=self._apply_lora_to_output,
|
||||
lora_rank=self._lora_rank,
|
||||
lora_alpha=self._lora_alpha,
|
||||
quantize_base=False,
|
||||
use_dora=self._use_dora,
|
||||
)
|
||||
|
||||
self.adapter_params = get_adapter_params(model)
|
||||
self._is_dora = any(["magnitude" in k for k in self.adapter_params.keys()])
|
||||
|
||||
set_trainable_params(model, self.adapter_params)
|
||||
|
||||
if enable_activation_checkpointing:
|
||||
training.set_activation_checkpointing(
|
||||
model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
|
||||
)
|
||||
|
||||
base_missing, base_unexpected = model.load_state_dict(
|
||||
base_model_state_dict, strict=False
|
||||
)
|
||||
|
||||
# This is for any adapters that need to be initialized after base weights
|
||||
# have been loaded (e.g. DoRA).
|
||||
if self._is_dora:
|
||||
for m in model.modules():
|
||||
if hasattr(m, "initialize_dora_magnitude"):
|
||||
m.initialize_dora_magnitude()
|
||||
load_dora_magnitudes(model)
|
||||
if lora_weights_state_dict:
|
||||
lora_missing, lora_unexpected = model.load_state_dict(
|
||||
lora_weights_state_dict, strict=False
|
||||
)
|
||||
else:
|
||||
lora_missing, lora_unexpected = None, None
|
||||
validate_missing_and_unexpected_for_lora(
|
||||
lora_attn_modules=self._lora_attn_modules,
|
||||
apply_lora_to_mlp=self._apply_lora_to_mlp,
|
||||
apply_lora_to_output=self._apply_lora_to_output,
|
||||
base_missing=base_missing,
|
||||
base_unexpected=base_unexpected,
|
||||
lora_missing=lora_missing,
|
||||
lora_unexpected=lora_unexpected,
|
||||
)
|
||||
# Validate model adapter params were loaded in with the expected dtype
|
||||
# TODO (rohan-varma): Further validation to ensure the appropriate base params
|
||||
# are NF4 vs bf16 based on the quantization config.
|
||||
training.validate_expected_param_dtype(
|
||||
self.adapter_params.items(), dtype=self._dtype
|
||||
)
|
||||
|
||||
# activation offloading
|
||||
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(
|
||||
model, enable_activation_offloading
|
||||
)
|
||||
|
||||
log.info(f"Model is initialized with precision {self._dtype}.")
|
||||
|
||||
# if self._device.type != "cpu":
|
||||
# memory_stats = training.get_memory_stats(device=self._device)
|
||||
# training.log_memory_stats(memory_stats)
|
||||
return model
|
||||
|
||||
def _setup_tokenizer(
|
||||
self,
|
||||
) -> Tokenizer:
|
||||
tokenizer_path = self.config.checkpoint_dir + "/tokenizer.model"
|
||||
tokenizer_type = utils.get_tokenizer_type(self.model_id)
|
||||
return tokenizer_type(path=tokenizer_path)
|
||||
|
||||
def _setup_optimizer(self, optimizer_config: OptimizerConfig) -> Optimizer:
|
||||
optimizer = torch.optim.AdamW(
|
||||
params=self._model.parameters(),
|
||||
lr=optimizer_config.lr,
|
||||
betas=(0.9, 0.95),
|
||||
eps=1e-8,
|
||||
weight_decay=0.1,
|
||||
)
|
||||
|
||||
log.info("Optimizer and loss are initialized.")
|
||||
return optimizer
|
||||
|
||||
async def _setup_data(
|
||||
self, tokenizer: Tokenizer, shuffle: bool, batch_size: int
|
||||
) -> Tuple[DistributedSampler, DataLoader]:
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=self.request.dataset_id,
|
||||
rows_in_page=-1,
|
||||
)
|
||||
rows = all_rows.rows
|
||||
|
||||
ds = SFTDataset(
|
||||
rows, message_transform=InputOutputToMessages(), model_transform=tokenizer
|
||||
)
|
||||
|
||||
sampler = DistributedSampler(
|
||||
ds,
|
||||
num_replicas=1,
|
||||
rank=0,
|
||||
shuffle=shuffle,
|
||||
seed=0,
|
||||
)
|
||||
dataloader = DataLoader(
|
||||
dataset=ds,
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
# dropping last avoids shape issues with compile + flex attention
|
||||
drop_last=True,
|
||||
collate_fn=(
|
||||
partial(
|
||||
padded_collate_sft,
|
||||
padding_idx=self._tokenizer.pad_id,
|
||||
ignore_idx=self._loss_fn.ignore_index,
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
log.info("Dataset and Sampler are initialized.")
|
||||
|
||||
return sampler, dataloader
|
||||
|
||||
def _setup_lr_scheduler(
|
||||
self,
|
||||
num_warmup_steps: int,
|
||||
num_training_steps: int,
|
||||
last_epoch: int,
|
||||
) -> Optimizer:
|
||||
lr_scheduler = get_cosine_schedule_with_warmup(
|
||||
self._optimizer,
|
||||
num_training_steps=num_training_steps,
|
||||
last_epoch=last_epoch,
|
||||
)
|
||||
|
||||
log.info("Learning rate scheduler is initialized.")
|
||||
return lr_scheduler
|
|
@ -0,0 +1,45 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, IAny, nc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
import torch
|
||||
from llama_models.sku_list import resolve_model
|
||||
from torchtune.models.llama3 import llama3_tokenizer, lora_llama3_8b
|
||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||
|
||||
LORA_MODEL_TYPES: Dict[str, Any] = {
|
||||
"Llama-3-8B-Instruct": lora_llama3_8b,
|
||||
}
|
||||
|
||||
TOKENIZER_TYPES: Dict[str, Any] = {
|
||||
"Llama-3-8B-Instruct": llama3_tokenizer,
|
||||
}
|
||||
|
||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||
|
||||
|
||||
def get_model_type(
|
||||
self,
|
||||
model_id: str,
|
||||
) -> BuildLoraModelCallable:
|
||||
model = resolve_model(model_id)
|
||||
return LORA_MODEL_TYPES[model.core_model_id.value]
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
self,
|
||||
model_id: str,
|
||||
) -> BuildTokenizerCallable:
|
||||
model = resolve_model(model_id)
|
||||
return TOKENIZER_TYPES[model.core_model_id.value]
|
Loading…
Add table
Add a link
Reference in a new issue