featu: support passing "extra body" throught to providers

# What does this PR do?
Allows passing through extra_body parameters to inference providers.


closes #2720

## Test Plan
CI and added new test
This commit is contained in:
Eric Huang 2025-10-10 14:05:16 -07:00
parent cb7fb0705b
commit d7b57a8dd2
4 changed files with 107 additions and 20 deletions

View file

@ -1058,8 +1058,6 @@ class OpenAICompletionRequest(BaseModel):
:param top_p: (Optional) The top p to use.
:param user: (Optional) The user to use.
:param suffix: (Optional) The suffix that should be appended to the completion.
:param guided_choice: (Optional) vLLM-specific parameter for guided generation with a list of choices.
:param prompt_logprobs: (Optional) vLLM-specific parameter for number of log probabilities to return for prompt tokens.
"""
model_config = ConfigDict(extra="allow")
@ -1082,12 +1080,6 @@ class OpenAICompletionRequest(BaseModel):
temperature: float | None = None
top_p: float | None = None
user: str | None = None
# vLLM-specific parameters (documented here but also allowed via extra fields)
guided_choice: list[str] | None = None
prompt_logprobs: int | None = None
# for fill-in-the-middle type completion
suffix: str | None = None

View file

@ -230,6 +230,9 @@ class LiteLLMOpenAIMixin(
) -> OpenAICompletion:
model_obj = await self.model_store.get_model(params.model)
# Extract extra fields
extra_body = dict(params.__pydantic_extra__ or {})
request_params = await prepare_openai_completion_params(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
prompt=params.prompt,
@ -248,11 +251,10 @@ class LiteLLMOpenAIMixin(
temperature=params.temperature,
top_p=params.top_p,
user=params.user,
guided_choice=params.guided_choice,
prompt_logprobs=params.prompt_logprobs,
suffix=params.suffix,
api_key=self.get_api_key(),
api_base=self.api_base,
**extra_body,
)
return await litellm.atext_completion(**request_params)
@ -272,6 +274,9 @@ class LiteLLMOpenAIMixin(
model_obj = await self.model_store.get_model(params.model)
# Extract extra fields
extra_body = dict(params.__pydantic_extra__ or {})
request_params = await prepare_openai_completion_params(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
messages=params.messages,
@ -298,6 +303,7 @@ class LiteLLMOpenAIMixin(
user=params.user,
api_key=self.get_api_key(),
api_base=self.api_base,
**extra_body,
)
return await litellm.acompletion(**request_params)

View file

@ -228,15 +228,6 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
"""
Direct OpenAI completion API call.
"""
# Handle parameters that are not supported by OpenAI API, but may be by the provider
# prompt_logprobs is supported by vLLM
# guided_choice is supported by vLLM
# TODO: test coverage
extra_body: dict[str, Any] = {}
if params.prompt_logprobs is not None and params.prompt_logprobs >= 0:
extra_body["prompt_logprobs"] = params.prompt_logprobs
if params.guided_choice:
extra_body["guided_choice"] = params.guided_choice
# TODO: fix openai_completion to return type compatible with OpenAI's API response
completion_kwargs = await prepare_openai_completion_params(
@ -259,7 +250,9 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
user=params.user,
suffix=params.suffix,
)
resp = await self.client.completions.create(**completion_kwargs, extra_body=extra_body)
if extra_body := dict(params.__pydantic_extra__ or {}):
completion_kwargs["extra_body"] = extra_body
resp = await self.client.completions.create(**completion_kwargs)
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
@ -316,6 +309,8 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
user=params.user,
)
if extra_body := dict(params.__pydantic_extra__ or {}):
request_params["extra_body"] = extra_body
resp = await self.client.chat.completions.create(**request_params)
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]

View file

@ -15,6 +15,9 @@ from llama_stack.apis.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionRequest,
OpenAIChoice,
OpenAICompletion,
OpenAICompletionChoice,
OpenAICompletionRequest,
ToolChoice,
)
from llama_stack.apis.models import Model
@ -191,3 +194,94 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
assert mock_create_client.call_count == 4 # no cheating
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
async def test_extra_body_forwarding(vllm_inference_adapter):
"""
Test that extra_body parameters (e.g., chat_template_kwargs) are correctly
forwarded to the underlying OpenAI client.
"""
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
vllm_inference_adapter.model_store.get_model.return_value = mock_model
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
mock_client = MagicMock()
mock_client.chat.completions.create = AsyncMock(
return_value=OpenAIChatCompletion(
id="chatcmpl-abc123",
created=1,
model="mock-model",
choices=[
OpenAIChoice(
message=OpenAIAssistantMessageParam(
content="test response",
),
finish_reason="stop",
index=0,
)
],
)
)
mock_client_property.return_value = mock_client
# Test with chat_template_kwargs for Granite thinking mode
params = OpenAIChatCompletionRequest(
model="mock-model",
messages=[{"role": "user", "content": "test"}],
stream=False,
chat_template_kwargs={"thinking": True},
)
await vllm_inference_adapter.openai_chat_completion(params)
# Verify that the client was called with extra_body containing chat_template_kwargs
mock_client.chat.completions.create.assert_called_once()
call_kwargs = mock_client.chat.completions.create.call_args.kwargs
assert "extra_body" in call_kwargs
assert "chat_template_kwargs" in call_kwargs["extra_body"]
assert call_kwargs["extra_body"]["chat_template_kwargs"] == {"thinking": True}
async def test_vllm_completion_extra_body(vllm_inference_adapter):
"""
Test that vLLM-specific guided_choice parameter is correctly forwarded
via extra_body to the underlying OpenAI client.
"""
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
vllm_inference_adapter.model_store.get_model.return_value = mock_model
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
mock_client = MagicMock()
mock_client.completions.create = AsyncMock(
return_value=OpenAICompletion(
id="cmpl-abc123",
created=1,
model="mock-model",
choices=[
OpenAICompletionChoice(
text="joy",
finish_reason="stop",
index=0,
)
],
)
)
mock_client_property.return_value = mock_client
# Test with guided_choice as extra field
params = OpenAICompletionRequest(
model="mock-model",
prompt="I am feeling happy",
stream=False,
guided_choice=["joy", "sadness"],
prompt_logprobs=5,
)
await vllm_inference_adapter.openai_completion(params)
# Verify that the client was called with extra_body containing guided_choice
mock_client.completions.create.assert_called_once()
call_kwargs = mock_client.completions.create.call_args.kwargs
assert "extra_body" in call_kwargs
assert "guided_choice" in call_kwargs["extra_body"]
assert call_kwargs["extra_body"]["guided_choice"] == ["joy", "sadness"]
assert "prompt_logprobs" in call_kwargs["extra_body"]
assert call_kwargs["extra_body"]["prompt_logprobs"] == 5