mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 21:48:36 +00:00
featu: support passing "extra body" throught to providers
# What does this PR do? Allows passing through extra_body parameters to inference providers. closes #2720 ## Test Plan CI and added new test
This commit is contained in:
parent
cb7fb0705b
commit
d7b57a8dd2
4 changed files with 107 additions and 20 deletions
|
@ -1058,8 +1058,6 @@ class OpenAICompletionRequest(BaseModel):
|
|||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:param suffix: (Optional) The suffix that should be appended to the completion.
|
||||
:param guided_choice: (Optional) vLLM-specific parameter for guided generation with a list of choices.
|
||||
:param prompt_logprobs: (Optional) vLLM-specific parameter for number of log probabilities to return for prompt tokens.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
@ -1082,12 +1080,6 @@ class OpenAICompletionRequest(BaseModel):
|
|||
temperature: float | None = None
|
||||
top_p: float | None = None
|
||||
user: str | None = None
|
||||
|
||||
# vLLM-specific parameters (documented here but also allowed via extra fields)
|
||||
guided_choice: list[str] | None = None
|
||||
prompt_logprobs: int | None = None
|
||||
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None
|
||||
|
||||
|
||||
|
|
|
@ -230,6 +230,9 @@ class LiteLLMOpenAIMixin(
|
|||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
# Extract extra fields
|
||||
extra_body = dict(params.__pydantic_extra__ or {})
|
||||
|
||||
request_params = await prepare_openai_completion_params(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
prompt=params.prompt,
|
||||
|
@ -248,11 +251,10 @@ class LiteLLMOpenAIMixin(
|
|||
temperature=params.temperature,
|
||||
top_p=params.top_p,
|
||||
user=params.user,
|
||||
guided_choice=params.guided_choice,
|
||||
prompt_logprobs=params.prompt_logprobs,
|
||||
suffix=params.suffix,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
**extra_body,
|
||||
)
|
||||
return await litellm.atext_completion(**request_params)
|
||||
|
||||
|
@ -272,6 +274,9 @@ class LiteLLMOpenAIMixin(
|
|||
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
# Extract extra fields
|
||||
extra_body = dict(params.__pydantic_extra__ or {})
|
||||
|
||||
request_params = await prepare_openai_completion_params(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
messages=params.messages,
|
||||
|
@ -298,6 +303,7 @@ class LiteLLMOpenAIMixin(
|
|||
user=params.user,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
**extra_body,
|
||||
)
|
||||
return await litellm.acompletion(**request_params)
|
||||
|
||||
|
|
|
@ -228,15 +228,6 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
"""
|
||||
Direct OpenAI completion API call.
|
||||
"""
|
||||
# Handle parameters that are not supported by OpenAI API, but may be by the provider
|
||||
# prompt_logprobs is supported by vLLM
|
||||
# guided_choice is supported by vLLM
|
||||
# TODO: test coverage
|
||||
extra_body: dict[str, Any] = {}
|
||||
if params.prompt_logprobs is not None and params.prompt_logprobs >= 0:
|
||||
extra_body["prompt_logprobs"] = params.prompt_logprobs
|
||||
if params.guided_choice:
|
||||
extra_body["guided_choice"] = params.guided_choice
|
||||
|
||||
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
||||
completion_kwargs = await prepare_openai_completion_params(
|
||||
|
@ -259,7 +250,9 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
user=params.user,
|
||||
suffix=params.suffix,
|
||||
)
|
||||
resp = await self.client.completions.create(**completion_kwargs, extra_body=extra_body)
|
||||
if extra_body := dict(params.__pydantic_extra__ or {}):
|
||||
completion_kwargs["extra_body"] = extra_body
|
||||
resp = await self.client.completions.create(**completion_kwargs)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
|
||||
|
||||
|
@ -316,6 +309,8 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
user=params.user,
|
||||
)
|
||||
|
||||
if extra_body := dict(params.__pydantic_extra__ or {}):
|
||||
request_params["extra_body"] = extra_body
|
||||
resp = await self.client.chat.completions.create(**request_params)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
|
||||
|
|
|
@ -15,6 +15,9 @@ from llama_stack.apis.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionRequest,
|
||||
OpenAIChoice,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionChoice,
|
||||
OpenAICompletionRequest,
|
||||
ToolChoice,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
|
@ -191,3 +194,94 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
|
|||
|
||||
assert mock_create_client.call_count == 4 # no cheating
|
||||
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
|
||||
|
||||
|
||||
async def test_extra_body_forwarding(vllm_inference_adapter):
|
||||
"""
|
||||
Test that extra_body parameters (e.g., chat_template_kwargs) are correctly
|
||||
forwarded to the underlying OpenAI client.
|
||||
"""
|
||||
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
|
||||
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
||||
|
||||
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(
|
||||
return_value=OpenAIChatCompletion(
|
||||
id="chatcmpl-abc123",
|
||||
created=1,
|
||||
model="mock-model",
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=OpenAIAssistantMessageParam(
|
||||
content="test response",
|
||||
),
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
mock_client_property.return_value = mock_client
|
||||
|
||||
# Test with chat_template_kwargs for Granite thinking mode
|
||||
params = OpenAIChatCompletionRequest(
|
||||
model="mock-model",
|
||||
messages=[{"role": "user", "content": "test"}],
|
||||
stream=False,
|
||||
chat_template_kwargs={"thinking": True},
|
||||
)
|
||||
await vllm_inference_adapter.openai_chat_completion(params)
|
||||
|
||||
# Verify that the client was called with extra_body containing chat_template_kwargs
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
call_kwargs = mock_client.chat.completions.create.call_args.kwargs
|
||||
assert "extra_body" in call_kwargs
|
||||
assert "chat_template_kwargs" in call_kwargs["extra_body"]
|
||||
assert call_kwargs["extra_body"]["chat_template_kwargs"] == {"thinking": True}
|
||||
|
||||
|
||||
async def test_vllm_completion_extra_body(vllm_inference_adapter):
|
||||
"""
|
||||
Test that vLLM-specific guided_choice parameter is correctly forwarded
|
||||
via extra_body to the underlying OpenAI client.
|
||||
"""
|
||||
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
|
||||
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
||||
|
||||
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
|
||||
mock_client = MagicMock()
|
||||
mock_client.completions.create = AsyncMock(
|
||||
return_value=OpenAICompletion(
|
||||
id="cmpl-abc123",
|
||||
created=1,
|
||||
model="mock-model",
|
||||
choices=[
|
||||
OpenAICompletionChoice(
|
||||
text="joy",
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
mock_client_property.return_value = mock_client
|
||||
|
||||
# Test with guided_choice as extra field
|
||||
params = OpenAICompletionRequest(
|
||||
model="mock-model",
|
||||
prompt="I am feeling happy",
|
||||
stream=False,
|
||||
guided_choice=["joy", "sadness"],
|
||||
prompt_logprobs=5,
|
||||
)
|
||||
await vllm_inference_adapter.openai_completion(params)
|
||||
|
||||
# Verify that the client was called with extra_body containing guided_choice
|
||||
mock_client.completions.create.assert_called_once()
|
||||
call_kwargs = mock_client.completions.create.call_args.kwargs
|
||||
assert "extra_body" in call_kwargs
|
||||
assert "guided_choice" in call_kwargs["extra_body"]
|
||||
assert call_kwargs["extra_body"]["guided_choice"] == ["joy", "sadness"]
|
||||
assert "prompt_logprobs" in call_kwargs["extra_body"]
|
||||
assert call_kwargs["extra_body"]["prompt_logprobs"] == 5
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue