Merge branch 'pr1573' into api_2

This commit is contained in:
Xi Yan 2025-03-12 21:02:30 -07:00
commit d7dbc8cf64
21 changed files with 673 additions and 232 deletions

View file

@ -370,7 +370,7 @@ class AgentTurnResumeRequest(BaseModel):
agent_id: str
session_id: str
turn_id: str
tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]]
tool_responses: List[ToolResponse]
stream: Optional[bool] = False
@ -449,7 +449,7 @@ class Agents(Protocol):
agent_id: str,
session_id: str,
turn_id: str,
tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
tool_responses: List[ToolResponse],
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
"""Resume an agent turn with executed tool call responses.
@ -460,7 +460,6 @@ class Agents(Protocol):
:param session_id: The ID of the session to resume.
:param turn_id: The ID of the turn to resume.
:param tool_responses: The tool call responses to resume the turn with.
NOTE: ToolResponseMessage will be deprecated. Use ToolResponse.
:param stream: Whether to stream the response.
:returns: A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk objects.
"""

View file

@ -13,10 +13,10 @@ from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
class Schema(Enum):
class DatasetPurpose(Enum):
"""
Schema of the dataset. Each type has a different column format.
:cvar messages: The dataset contains messages used for post-training. Examples:
Purpose of the dataset. Each type has a different column format.
:cvar post-training/messages: The dataset contains messages used for post-training. Examples:
{
"messages": [
{"role": "user", "content": "Hello, world!"},
@ -25,11 +25,19 @@ class Schema(Enum):
}
"""
messages = "messages"
post_training_messages = "post-training/messages"
eval_question_answer = "eval/question-answer"
# TODO: add more schemas here
class DatasetType(Enum):
"""
Type of the dataset source.
:cvar huggingface: The dataset is stored in Huggingface.
:cvar uri: The dataset can be obtained from a URI.
:cvar rows: The dataset is stored in rows.
"""
huggingface = "huggingface"
uri = "uri"
rows = "rows"
@ -37,19 +45,36 @@ class DatasetType(Enum):
@json_schema_type
class URIDataSource(BaseModel):
"""A dataset that can be obtained from a URI.
:param uri: The dataset can be obtained from a URI. E.g.
- "https://mywebsite.com/mydata.jsonl"
- "lsfs://mydata.jsonl"
- "data:csv;base64,{base64_content}"
"""
type: Literal["uri"] = "uri"
uri: str
@json_schema_type
class HuggingfaceDataSource(BaseModel):
"""A dataset stored in Huggingface.
:param path: The path to the dataset in Huggingface. E.g.
- "llamastack/simpleqa"
:param params: The parameters for the dataset.
"""
type: Literal["huggingface"] = "huggingface"
dataset_path: str
path: str
params: Dict[str, Any]
@json_schema_type
class RowsDataSource(BaseModel):
"""A dataset stored in rows.
:param rows: The dataset is stored in rows. E.g.
- [
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
]
"""
type: Literal["rows"] = "rows"
rows: List[Dict[str, Any]]
@ -64,8 +89,11 @@ DataSource = register_schema(
class CommonDatasetFields(BaseModel):
schema: Schema
data_source: DataSource
"""
Common fields for a dataset.
"""
purpose: DatasetPurpose
source: DataSource
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
@ -99,17 +127,18 @@ class Datasets(Protocol):
@webmethod(route="/datasets", method="POST")
async def register_dataset(
self,
schema: Schema,
data_source: DataSource,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
) -> Dataset:
"""
Register a new dataset.
:param schema: The schema format of the dataset. One of
- messages: The dataset contains a messages column with list of messages for post-training.
:param data_source: The data source of the dataset. Examples:
:param purpose: The purpose of the dataset. One of
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
- "eval/question-answer": The dataset contains a question and answer column.
:param source: The data source of the dataset. Examples:
- {
"type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl"

View file

@ -285,7 +285,7 @@ class CompletionRequest(BaseModel):
@json_schema_type
class CompletionResponse(BaseModel):
class CompletionResponse(MetricResponseMixin):
"""Response from a completion request.
:param content: The generated completion text
@ -299,7 +299,7 @@ class CompletionResponse(BaseModel):
@json_schema_type
class CompletionResponseStreamChunk(BaseModel):
class CompletionResponseStreamChunk(MetricResponseMixin):
"""A chunk of a streamed completion response.
:param delta: New content generated since last chunk. This can be one or more tokens.
@ -368,7 +368,7 @@ class ChatCompletionRequest(BaseModel):
@json_schema_type
class ChatCompletionResponseStreamChunk(MetricResponseMixin, BaseModel):
class ChatCompletionResponseStreamChunk(MetricResponseMixin):
"""A chunk of a streamed chat completion response.
:param event: The event containing the new content
@ -378,7 +378,7 @@ class ChatCompletionResponseStreamChunk(MetricResponseMixin, BaseModel):
@json_schema_type
class ChatCompletionResponse(MetricResponseMixin, BaseModel):
class ChatCompletionResponse(MetricResponseMixin):
"""Response from a chat completion request.
:param completion_message: The complete response message

View file

@ -96,6 +96,13 @@ class MetricEvent(EventCommon):
unit: str
@json_schema_type
class MetricInResponse(BaseModel):
metric: str
value: Union[int, float]
unit: Optional[str] = None
# This is a short term solution to allow inference API to return metrics
# The ideal way to do this is to have a way for all response types to include metrics
# and all metric events logged to the telemetry API to be inlcuded with the response
@ -117,7 +124,7 @@ class MetricEvent(EventCommon):
class MetricResponseMixin(BaseModel):
metrics: Optional[List[MetricEvent]] = None
metrics: Optional[List[MetricInResponse]] = None
@json_schema_type