mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 14:57:20 +00:00
refactor: use extra_body
to pass in input_type
params for asymmetric embedding models for NVIDIA Inference Provider (#3804)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
Test Llama Stack Build / build (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 9s
API Conformance Tests / check-schema-compatibility (push) Successful in 16s
UI Tests / ui-tests (22) (push) Successful in 33s
Pre-commit / pre-commit (push) Successful in 1m33s
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
Test Llama Stack Build / build (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 9s
API Conformance Tests / check-schema-compatibility (push) Successful in 16s
UI Tests / ui-tests (22) (push) Successful in 33s
Pre-commit / pre-commit (push) Successful in 1m33s
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> Previously, the NVIDIA inference provider implemented a custom `openai_embeddings` method with a hardcoded `input_type="query"` parameter, which is required by NVIDIA asymmetric embedding models([https://github.com/llamastack/llama-stack/pull/3205](https://github.com/llamastack/llama-stack/pull/3205)). Recently `extra_body` parameter is added to the embeddings API ([https://github.com/llamastack/llama-stack/pull/3794](https://github.com/llamastack/llama-stack/pull/3794)). So, this PR updates the NVIDIA inference provider to use the base `OpenAIMixin.openai_embeddings` method instead and pass the `input_type` through the `extra_body` parameter for asymmetric embedding models. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Run the following command for the ```embedding_model```: ```nvidia/llama-3.2-nv-embedqa-1b-v2```, ```nvidia/nv-embedqa-e5-v5```, ```nvidia/nv-embedqa-mistral-7b-v2```, and ```snowflake/arctic-embed-l```. ``` pytest -s -v tests/integration/inference/test_openai_embeddings.py --stack-config="inference=nvidia" --embedding-model={embedding_model} --env NVIDIA_API_KEY={nvidia_api_key} --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com" --inference-mode=record ```
This commit is contained in:
parent
866c13cdc2
commit
d875e427bf
3 changed files with 75 additions and 70 deletions
|
@ -12,6 +12,15 @@ from openai import OpenAI
|
|||
|
||||
from llama_stack.core.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
ASYMMETRIC_EMBEDDING_MODELS_BY_PROVIDER = {
|
||||
"remote::nvidia": [
|
||||
"nvidia/llama-3.2-nv-embedqa-1b-v2",
|
||||
"nvidia/nv-embedqa-e5-v5",
|
||||
"nvidia/nv-embedqa-mistral-7b-v2",
|
||||
"snowflake/arctic-embed-l",
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def decode_base64_to_floats(base64_string: str) -> list[float]:
|
||||
"""Helper function to decode base64 string to list of float32 values."""
|
||||
|
@ -29,6 +38,28 @@ def provider_from_model(client_with_models, model_id):
|
|||
return providers[provider_id]
|
||||
|
||||
|
||||
def is_asymmetric_model(client_with_models, model_id):
|
||||
provider = provider_from_model(client_with_models, model_id)
|
||||
provider_type = provider.provider_type
|
||||
|
||||
if provider_type not in ASYMMETRIC_EMBEDDING_MODELS_BY_PROVIDER:
|
||||
return False
|
||||
|
||||
return model_id in ASYMMETRIC_EMBEDDING_MODELS_BY_PROVIDER[provider_type]
|
||||
|
||||
|
||||
def get_extra_body_for_model(client_with_models, model_id, input_type="query"):
|
||||
if not is_asymmetric_model(client_with_models, model_id):
|
||||
return None
|
||||
|
||||
provider = provider_from_model(client_with_models, model_id)
|
||||
|
||||
if provider.provider_type == "remote::nvidia":
|
||||
return {"input_type": input_type}
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def skip_if_model_doesnt_support_user_param(client, model_id):
|
||||
provider = provider_from_model(client, model_id)
|
||||
if provider.provider_type in (
|
||||
|
@ -40,17 +71,29 @@ def skip_if_model_doesnt_support_user_param(client, model_id):
|
|||
|
||||
def skip_if_model_doesnt_support_encoding_format_base64(client, model_id):
|
||||
provider = provider_from_model(client, model_id)
|
||||
if provider.provider_type in (
|
||||
|
||||
should_skip = provider.provider_type in (
|
||||
"remote::databricks", # param silently ignored, always returns floats
|
||||
"remote::fireworks", # param silently ignored, always returns list of floats
|
||||
"remote::ollama", # param silently ignored, always returns list of floats
|
||||
):
|
||||
) or (
|
||||
provider.provider_type == "remote::nvidia"
|
||||
and model_id
|
||||
in [
|
||||
"nvidia/nv-embedqa-e5-v5",
|
||||
"nvidia/nv-embedqa-mistral-7b-v2",
|
||||
"snowflake/arctic-embed-l",
|
||||
]
|
||||
)
|
||||
|
||||
if should_skip:
|
||||
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} does not support encoding_format='base64'.")
|
||||
|
||||
|
||||
def skip_if_model_doesnt_support_variable_dimensions(client_with_models, model_id):
|
||||
provider = provider_from_model(client_with_models, model_id)
|
||||
if (
|
||||
|
||||
should_skip = (
|
||||
provider.provider_type
|
||||
in (
|
||||
"remote::together", # returns 400
|
||||
|
@ -59,11 +102,19 @@ def skip_if_model_doesnt_support_variable_dimensions(client_with_models, model_i
|
|||
"remote::databricks",
|
||||
"remote::watsonx", # openai.BadRequestError: Error code: 400 - {'detail': "litellm.UnsupportedParamsError: watsonx does not support parameters: {'dimensions': 384}
|
||||
)
|
||||
):
|
||||
pytest.skip(
|
||||
f"Model {model_id} hosted by {provider.provider_type} does not support variable output embedding dimensions."
|
||||
or (provider.provider_type == "remote::openai" and "text-embedding-3" not in model_id)
|
||||
or (
|
||||
provider.provider_type == "remote::nvidia"
|
||||
and model_id
|
||||
in [
|
||||
"nvidia/nv-embedqa-e5-v5",
|
||||
"nvidia/nv-embedqa-mistral-7b-v2",
|
||||
"snowflake/arctic-embed-l",
|
||||
]
|
||||
)
|
||||
if provider.provider_type == "remote::openai" and "text-embedding-3" not in model_id:
|
||||
)
|
||||
|
||||
if should_skip:
|
||||
pytest.skip(
|
||||
f"Model {model_id} hosted by {provider.provider_type} does not support variable output embedding dimensions."
|
||||
)
|
||||
|
@ -105,6 +156,7 @@ def test_openai_embeddings_single_string(compat_client, client_with_models, embe
|
|||
model=embedding_model_id,
|
||||
input=input_text,
|
||||
encoding_format="float",
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
assert response.object == "list"
|
||||
|
@ -129,6 +181,7 @@ def test_openai_embeddings_multiple_strings(compat_client, client_with_models, e
|
|||
model=embedding_model_id,
|
||||
input=input_texts,
|
||||
encoding_format="float",
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
assert response.object == "list"
|
||||
|
@ -155,6 +208,7 @@ def test_openai_embeddings_with_encoding_format_float(compat_client, client_with
|
|||
model=embedding_model_id,
|
||||
input=input_text,
|
||||
encoding_format="float",
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
assert response.object == "list"
|
||||
|
@ -175,6 +229,7 @@ def test_openai_embeddings_with_dimensions(compat_client, client_with_models, em
|
|||
model=embedding_model_id,
|
||||
input=input_text,
|
||||
dimensions=dimensions,
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
assert response.object == "list"
|
||||
|
@ -196,6 +251,7 @@ def test_openai_embeddings_with_user_parameter(compat_client, client_with_models
|
|||
model=embedding_model_id,
|
||||
input=input_text,
|
||||
user=user_id,
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
assert response.object == "list"
|
||||
|
@ -212,6 +268,7 @@ def test_openai_embeddings_empty_list_error(compat_client, client_with_models, e
|
|||
compat_client.embeddings.create(
|
||||
model=embedding_model_id,
|
||||
input=[],
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
|
||||
|
@ -223,6 +280,7 @@ def test_openai_embeddings_invalid_model_error(compat_client, client_with_models
|
|||
compat_client.embeddings.create(
|
||||
model="invalid-model-id",
|
||||
input="Test text",
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
|
||||
|
@ -233,16 +291,19 @@ def test_openai_embeddings_different_inputs_different_outputs(compat_client, cli
|
|||
input_text1 = "This is the first text"
|
||||
input_text2 = "This is completely different content"
|
||||
|
||||
extra_body = get_extra_body_for_model(client_with_models, embedding_model_id)
|
||||
response1 = compat_client.embeddings.create(
|
||||
model=embedding_model_id,
|
||||
input=input_text1,
|
||||
encoding_format="float",
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
response2 = compat_client.embeddings.create(
|
||||
model=embedding_model_id,
|
||||
input=input_text2,
|
||||
encoding_format="float",
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
embedding1 = response1.data[0].embedding
|
||||
|
@ -267,6 +328,7 @@ def test_openai_embeddings_with_encoding_format_base64(compat_client, client_wit
|
|||
input=input_text,
|
||||
encoding_format="base64",
|
||||
dimensions=dimensions,
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
|
||||
# Validate response structure
|
||||
|
@ -298,6 +360,7 @@ def test_openai_embeddings_base64_batch_processing(compat_client, client_with_mo
|
|||
model=embedding_model_id,
|
||||
input=input_texts,
|
||||
encoding_format="base64",
|
||||
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
|
||||
)
|
||||
# Validate response structure
|
||||
assert response.object == "list"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue