mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 22:09:48 +00:00
Adds groq inference adapter
This commit is contained in:
parent
4e6c984c26
commit
d8d0f4600d
10 changed files with 810 additions and 0 deletions
24
llama_stack/providers/remote/inference/groq/__init__.py
Normal file
24
llama_stack/providers/remote/inference/groq/__init__.py
Normal file
|
|
@ -0,0 +1,24 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import GroqImplConfig
|
||||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: str
|
||||
|
||||
|
||||
async def get_adapter_impl(config: GroqImplConfig, _deps):
|
||||
from .groq import GroqInferenceAdapter
|
||||
|
||||
assert isinstance(
|
||||
config, GroqImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = GroqInferenceAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
29
llama_stack/providers/remote/inference/groq/config.py
Normal file
29
llama_stack/providers/remote/inference/groq/config.py
Normal file
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GroqImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.groq.com/openai/v1",
|
||||
description="The URL for the Groq API server",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Groq API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.groq.com/openai/v1",
|
||||
"api_key": "${env.GROQ_API_KEY}",
|
||||
}
|
||||
464
llama_stack/providers/remote/inference/groq/groq.py
Normal file
464
llama_stack/providers/remote/inference/groq/groq.py
Normal file
|
|
@ -0,0 +1,464 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import AsyncGenerator, Dict, List, Optional, Union
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
AsyncIterator,
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
Inference,
|
||||
InterleavedTextMedia,
|
||||
LogProbConfig,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_model_alias,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
ChatCompletionResponseStreamChunk,
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
|
||||
from .config import GroqImplConfig
|
||||
|
||||
|
||||
class GroqErrorCode(str, Enum):
|
||||
INVALID_AUTH = "invalid_authentication"
|
||||
RATE_LIMIT_EXCEEDED = "rate_limit_exceeded"
|
||||
QUOTA_EXCEEDED = "quota_exceeded"
|
||||
CONTEXT_LENGTH_EXCEEDED = "context_length_exceeded"
|
||||
INVALID_REQUEST = "invalid_request"
|
||||
MODEL_NOT_FOUND = "model_not_found"
|
||||
|
||||
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"llama-3.2-1b-preview",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-3b-preview",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-11b-vision-preview",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-90b-vision-preview",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.1-8b-instant",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.1-70b-versatile",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3-8b-8192",
|
||||
CoreModelId.llama3_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3-70b-8192",
|
||||
CoreModelId.llama3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3-groq-8b-8192-tool-use-preview",
|
||||
CoreModelId.llama3_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3-groq-70b-8192-tool-use-preview",
|
||||
CoreModelId.llama3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-guard-3-8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
]
|
||||
|
||||
UNSUPPORTED_PARAMS = {
|
||||
"logprobs",
|
||||
"top_logprobs",
|
||||
"response_format",
|
||||
}
|
||||
|
||||
|
||||
class GroqInferenceAdapter(
|
||||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
"""Groq inference adapter using OpenAI client compatibility layer.
|
||||
|
||||
This adapter provides access to Groq's AI models through their OpenAI-compatible API.
|
||||
It handles authentication, request formatting, and response processing while managing
|
||||
unsupported features gracefully.
|
||||
|
||||
Supports tool/function calling for compatible models.
|
||||
"""
|
||||
|
||||
def __init__(self, config: GroqImplConfig) -> None:
|
||||
"""Initialize the Groq inference adapter.
|
||||
|
||||
Args:
|
||||
config: Configuration for the Groq implementation
|
||||
"""
|
||||
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
self._client: Optional[AsyncOpenAI] = None
|
||||
|
||||
@property
|
||||
def client(self) -> AsyncOpenAI:
|
||||
"""Get or create the OpenAI client instance.
|
||||
|
||||
Returns:
|
||||
AsyncOpenAI: The configured client instance
|
||||
"""
|
||||
if self._client is None:
|
||||
self._client = AsyncOpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self._get_api_key(),
|
||||
timeout=60.0,
|
||||
)
|
||||
return self._client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
"""Get the API key from config or request headers.
|
||||
|
||||
Returns:
|
||||
str: The API key to use
|
||||
|
||||
Raises:
|
||||
ValueError: If no API key is available
|
||||
"""
|
||||
if self.config.api_key is not None:
|
||||
return self.config.api_key
|
||||
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.groq_api_key:
|
||||
raise ValueError(
|
||||
'Pass Groq API Key in the header X-LlamaStack-ProviderData as { "groq_api_key": <your api key>}'
|
||||
)
|
||||
return provider_data.groq_api_key
|
||||
|
||||
def _filter_unsupported_params(self, params: Dict) -> Dict:
|
||||
"""Remove parameters not supported by Groq API.
|
||||
|
||||
Args:
|
||||
params: Original parameters dictionary
|
||||
|
||||
Returns:
|
||||
Dict: Filtered parameters dictionary
|
||||
"""
|
||||
return {k: v for k, v in params.items() if k not in UNSUPPORTED_PARAMS}
|
||||
|
||||
def _convert_tool_to_function(self, tool: ToolDefinition) -> dict:
|
||||
"""Convert a ToolDefinition to Groq function format.
|
||||
|
||||
Args:
|
||||
tool: Tool definition to convert
|
||||
|
||||
Returns:
|
||||
dict: Function definition in Groq format
|
||||
"""
|
||||
return {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool.tool_name,
|
||||
"description": tool.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
name: {
|
||||
"type": param.param_type,
|
||||
"description": param.description,
|
||||
}
|
||||
for name, param in tool.parameters.items()
|
||||
},
|
||||
"required": list(tool.parameters.keys()),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
"""Prepare parameters for the API request.
|
||||
|
||||
Args:
|
||||
request: The completion request
|
||||
|
||||
Returns:
|
||||
dict: Prepared parameters for the API call
|
||||
"""
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
filtered_options = self._filter_unsupported_params(sampling_options)
|
||||
|
||||
if "temperature" in filtered_options:
|
||||
filtered_options["temperature"] = min(
|
||||
max(filtered_options["temperature"], 0), 2
|
||||
)
|
||||
|
||||
input_dict = {}
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
input_dict["messages"] = [
|
||||
{"role": message.role, "content": message.content}
|
||||
for message in request.messages
|
||||
]
|
||||
|
||||
if request.tools:
|
||||
input_dict["tools"] = [
|
||||
self._convert_tool_to_function(tool)
|
||||
for tool in request.tools
|
||||
]
|
||||
|
||||
if request.tool_choice == ToolChoice.auto:
|
||||
input_dict["tool_choice"] = "auto"
|
||||
elif request.tool_choice == ToolChoice.required:
|
||||
input_dict["tool_choice"] = "required"
|
||||
elif isinstance(request.tool_choice, str):
|
||||
input_dict["tool_choice"] = {
|
||||
"type": "function",
|
||||
"function": {"name": request.tool_choice},
|
||||
}
|
||||
else:
|
||||
input_dict["tool_choice"] = "none"
|
||||
|
||||
else:
|
||||
input_dict["prompt"] = request.content
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
**filtered_options,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
async def _handle_groq_error(self, e: Exception) -> None:
|
||||
"""Handle Groq specific API errors with detailed messages.
|
||||
|
||||
Args:
|
||||
e: The exception to handle
|
||||
|
||||
Raises:
|
||||
ValueError: For client errors
|
||||
RuntimeError: For server errors
|
||||
"""
|
||||
error_msg = str(e)
|
||||
error_data = {}
|
||||
|
||||
try:
|
||||
if hasattr(e, "response"):
|
||||
error_data = e.response.json().get("error", {})
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
error_code = error_data.get("code", "")
|
||||
error_message = error_data.get("message", error_msg)
|
||||
|
||||
if "401" in error_msg or error_code == GroqErrorCode.INVALID_AUTH:
|
||||
raise ValueError("Invalid API key or unauthorized access") from e
|
||||
|
||||
elif (
|
||||
"429" in error_msg
|
||||
or error_code == GroqErrorCode.RATE_LIMIT_EXCEEDED
|
||||
):
|
||||
raise ValueError(
|
||||
"Rate limit exceeded. Please try again later"
|
||||
) from e
|
||||
|
||||
elif error_code == GroqErrorCode.QUOTA_EXCEEDED:
|
||||
raise ValueError(
|
||||
"API quota exceeded. Please check your usage limits"
|
||||
) from e
|
||||
|
||||
elif error_code == GroqErrorCode.CONTEXT_LENGTH_EXCEEDED:
|
||||
raise ValueError(
|
||||
"Total number of input and output tokens exceeds model's context length"
|
||||
) from e
|
||||
|
||||
elif error_code == GroqErrorCode.INVALID_REQUEST:
|
||||
raise ValueError(f"Invalid request: {error_message}") from e
|
||||
|
||||
elif error_code == GroqErrorCode.MODEL_NOT_FOUND:
|
||||
raise ValueError(f"Model not found: {error_message}") from e
|
||||
|
||||
raise RuntimeError(f"Groq API error: {error_message}") from e
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
try:
|
||||
params = await self._get_params(request)
|
||||
response = await self.client.chat.completions.create(**params)
|
||||
|
||||
if response.choices[0].message.tool_calls:
|
||||
tool_call = response.choices[0].message.tool_calls[0]
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=response.choices[0].finish_reason,
|
||||
text="",
|
||||
tool_calls=[
|
||||
{
|
||||
"tool_name": tool_call.function.name,
|
||||
"arguments": tool_call.function.arguments or "",
|
||||
}
|
||||
],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=response.choices[0].finish_reason,
|
||||
text=response.choices[0].message.content or "",
|
||||
tool_calls=[],
|
||||
)
|
||||
|
||||
compat_response = OpenAICompatCompletionResponse(choices=[choice])
|
||||
return process_chat_completion_response(
|
||||
compat_response, self.formatter
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
await self._handle_groq_error(e)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
try:
|
||||
params = await self._get_params(request)
|
||||
stream = await self.client.chat.completions.create(**params)
|
||||
|
||||
async def _to_async_generator():
|
||||
async for chunk in stream:
|
||||
if chunk.choices[0].delta.tool_calls:
|
||||
tool_call = chunk.choices[0].delta.tool_calls[0]
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk.choices[0].finish_reason,
|
||||
text="",
|
||||
tool_calls=[
|
||||
{
|
||||
"tool_name": tool_call.function.name
|
||||
if tool_call.function
|
||||
else None,
|
||||
"arguments": tool_call.function.arguments
|
||||
if tool_call.function
|
||||
else "",
|
||||
}
|
||||
]
|
||||
if tool_call.function
|
||||
else None,
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk.choices[0].finish_reason,
|
||||
text=chunk.choices[0].delta.content or "",
|
||||
tool_calls=[],
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(choices=[choice])
|
||||
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
_to_async_generator(), self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
except Exception as e:
|
||||
await self._handle_groq_error(e)
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]
|
||||
]:
|
||||
raise NotImplementedError("Groq does not support text completion")
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
"""Handle chat completion requests.
|
||||
|
||||
Args:
|
||||
model_id: The model identifier
|
||||
messages: List of chat messages
|
||||
sampling_params: Parameters for text generation
|
||||
tools: Tool definitions for function calling
|
||||
tool_choice: Tool choice option
|
||||
tool_prompt_format: Tool prompt format
|
||||
response_format: Response format (not supported)
|
||||
stream: Whether to stream the response
|
||||
logprobs: Log probability config (not supported)
|
||||
|
||||
Returns:
|
||||
AsyncGenerator: The completion response
|
||||
"""
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
"""Embeddings are not supported.
|
||||
|
||||
Raises:
|
||||
NotImplementedError: Always raised as this feature is not supported
|
||||
"""
|
||||
raise NotImplementedError("Embeddings not supported for Groq")
|
||||
Loading…
Add table
Add a link
Reference in a new issue