Merge branch 'main' into fix/issue-2584-llama4-tool-calling

This commit is contained in:
Sumanth Kamenani 2025-07-15 14:28:40 -04:00 committed by GitHub
commit d9f558e69f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 145 additions and 38 deletions

View file

@ -11340,6 +11340,9 @@
}, },
"embedding_dimension": { "embedding_dimension": {
"type": "integer" "type": "integer"
},
"vector_db_name": {
"type": "string"
} }
}, },
"additionalProperties": false, "additionalProperties": false,
@ -13590,10 +13593,6 @@
"provider_id": { "provider_id": {
"type": "string", "type": "string",
"description": "The ID of the provider to use for this vector store." "description": "The ID of the provider to use for this vector store."
},
"provider_vector_db_id": {
"type": "string",
"description": "The provider-specific vector database ID."
} }
}, },
"additionalProperties": false, "additionalProperties": false,
@ -15634,6 +15633,10 @@
"type": "string", "type": "string",
"description": "The identifier of the provider." "description": "The identifier of the provider."
}, },
"vector_db_name": {
"type": "string",
"description": "The name of the vector database."
},
"provider_vector_db_id": { "provider_vector_db_id": {
"type": "string", "type": "string",
"description": "The identifier of the vector database in the provider." "description": "The identifier of the vector database in the provider."

View file

@ -7984,6 +7984,8 @@ components:
type: string type: string
embedding_dimension: embedding_dimension:
type: integer type: integer
vector_db_name:
type: string
additionalProperties: false additionalProperties: false
required: required:
- identifier - identifier
@ -9494,10 +9496,6 @@ components:
type: string type: string
description: >- description: >-
The ID of the provider to use for this vector store. The ID of the provider to use for this vector store.
provider_vector_db_id:
type: string
description: >-
The provider-specific vector database ID.
additionalProperties: false additionalProperties: false
required: required:
- name - name
@ -10945,6 +10943,9 @@ components:
provider_id: provider_id:
type: string type: string
description: The identifier of the provider. description: The identifier of the provider.
vector_db_name:
type: string
description: The name of the vector database.
provider_vector_db_id: provider_vector_db_id:
type: string type: string
description: >- description: >-

View file

@ -19,6 +19,7 @@ class VectorDB(Resource):
embedding_model: str embedding_model: str
embedding_dimension: int embedding_dimension: int
vector_db_name: str | None = None
@property @property
def vector_db_id(self) -> str: def vector_db_id(self) -> str:
@ -70,6 +71,7 @@ class VectorDBs(Protocol):
embedding_model: str, embedding_model: str,
embedding_dimension: int | None = 384, embedding_dimension: int | None = 384,
provider_id: str | None = None, provider_id: str | None = None,
vector_db_name: str | None = None,
provider_vector_db_id: str | None = None, provider_vector_db_id: str | None = None,
) -> VectorDB: ) -> VectorDB:
"""Register a vector database. """Register a vector database.
@ -78,6 +80,7 @@ class VectorDBs(Protocol):
:param embedding_model: The embedding model to use. :param embedding_model: The embedding model to use.
:param embedding_dimension: The dimension of the embedding model. :param embedding_dimension: The dimension of the embedding model.
:param provider_id: The identifier of the provider. :param provider_id: The identifier of the provider.
:param vector_db_name: The name of the vector database.
:param provider_vector_db_id: The identifier of the vector database in the provider. :param provider_vector_db_id: The identifier of the vector database in the provider.
:returns: A VectorDB. :returns: A VectorDB.
""" """

View file

@ -346,7 +346,6 @@ class VectorIO(Protocol):
embedding_model: str | None = None, embedding_model: str | None = None,
embedding_dimension: int | None = 384, embedding_dimension: int | None = 384,
provider_id: str | None = None, provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject: ) -> VectorStoreObject:
"""Creates a vector store. """Creates a vector store.
@ -358,7 +357,6 @@ class VectorIO(Protocol):
:param embedding_model: The embedding model to use for this vector store. :param embedding_model: The embedding model to use for this vector store.
:param embedding_dimension: The dimension of the embedding vectors (default: 384). :param embedding_dimension: The dimension of the embedding vectors (default: 384).
:param provider_id: The ID of the provider to use for this vector store. :param provider_id: The ID of the provider to use for this vector store.
:param provider_vector_db_id: The provider-specific vector database ID.
:returns: A VectorStoreObject representing the created vector store. :returns: A VectorStoreObject representing the created vector store.
""" """
... ...

View file

@ -17,7 +17,7 @@ from llama_stack.distribution.distribution import (
builtin_automatically_routed_apis, builtin_automatically_routed_apis,
get_provider_registry, get_provider_registry,
) )
from llama_stack.distribution.stack import replace_env_vars from llama_stack.distribution.stack import cast_image_name_to_string, replace_env_vars
from llama_stack.distribution.utils.config_dirs import EXTERNAL_PROVIDERS_DIR from llama_stack.distribution.utils.config_dirs import EXTERNAL_PROVIDERS_DIR
from llama_stack.distribution.utils.dynamic import instantiate_class_type from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.distribution.utils.prompt_for_config import prompt_for_config from llama_stack.distribution.utils.prompt_for_config import prompt_for_config
@ -164,7 +164,8 @@ def upgrade_from_routing_table(
def parse_and_maybe_upgrade_config(config_dict: dict[str, Any]) -> StackRunConfig: def parse_and_maybe_upgrade_config(config_dict: dict[str, Any]) -> StackRunConfig:
version = config_dict.get("version", None) version = config_dict.get("version", None)
if version == LLAMA_STACK_RUN_CONFIG_VERSION: if version == LLAMA_STACK_RUN_CONFIG_VERSION:
return StackRunConfig(**replace_env_vars(config_dict)) processed_config_dict = replace_env_vars(config_dict)
return StackRunConfig(**cast_image_name_to_string(processed_config_dict))
if "routing_table" in config_dict: if "routing_table" in config_dict:
logger.info("Upgrading config...") logger.info("Upgrading config...")
@ -175,4 +176,5 @@ def parse_and_maybe_upgrade_config(config_dict: dict[str, Any]) -> StackRunConfi
if not config_dict.get("external_providers_dir", None): if not config_dict.get("external_providers_dir", None):
config_dict["external_providers_dir"] = EXTERNAL_PROVIDERS_DIR config_dict["external_providers_dir"] = EXTERNAL_PROVIDERS_DIR
return StackRunConfig(**replace_env_vars(config_dict)) processed_config_dict = replace_env_vars(config_dict)
return StackRunConfig(**cast_image_name_to_string(processed_config_dict))

View file

@ -5,6 +5,7 @@
# the root directory of this source tree. # the root directory of this source tree.
import asyncio import asyncio
import uuid
from typing import Any from typing import Any
from llama_stack.apis.common.content_types import ( from llama_stack.apis.common.content_types import (
@ -81,6 +82,7 @@ class VectorIORouter(VectorIO):
embedding_model: str, embedding_model: str,
embedding_dimension: int | None = 384, embedding_dimension: int | None = 384,
provider_id: str | None = None, provider_id: str | None = None,
vector_db_name: str | None = None,
provider_vector_db_id: str | None = None, provider_vector_db_id: str | None = None,
) -> None: ) -> None:
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}") logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
@ -89,6 +91,7 @@ class VectorIORouter(VectorIO):
embedding_model, embedding_model,
embedding_dimension, embedding_dimension,
provider_id, provider_id,
vector_db_name,
provider_vector_db_id, provider_vector_db_id,
) )
@ -123,7 +126,6 @@ class VectorIORouter(VectorIO):
embedding_model: str | None = None, embedding_model: str | None = None,
embedding_dimension: int | None = None, embedding_dimension: int | None = None,
provider_id: str | None = None, provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject: ) -> VectorStoreObject:
logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}") logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}")
@ -135,17 +137,17 @@ class VectorIORouter(VectorIO):
embedding_model, embedding_dimension = embedding_model_info embedding_model, embedding_dimension = embedding_model_info
logger.info(f"No embedding model specified, using first available: {embedding_model}") logger.info(f"No embedding model specified, using first available: {embedding_model}")
vector_db_id = name vector_db_id = f"vs_{uuid.uuid4()}"
registered_vector_db = await self.routing_table.register_vector_db( registered_vector_db = await self.routing_table.register_vector_db(
vector_db_id, vector_db_id=vector_db_id,
embedding_model, embedding_model=embedding_model,
embedding_dimension, embedding_dimension=embedding_dimension,
provider_id, provider_id=provider_id,
provider_vector_db_id, provider_vector_db_id=vector_db_id,
vector_db_name=name,
) )
return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store( return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store(
vector_db_id, name=name,
file_ids=file_ids, file_ids=file_ids,
expires_after=expires_after, expires_after=expires_after,
chunking_strategy=chunking_strategy, chunking_strategy=chunking_strategy,

View file

@ -36,6 +36,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
embedding_dimension: int | None = 384, embedding_dimension: int | None = 384,
provider_id: str | None = None, provider_id: str | None = None,
provider_vector_db_id: str | None = None, provider_vector_db_id: str | None = None,
vector_db_name: str | None = None,
) -> VectorDB: ) -> VectorDB:
if provider_vector_db_id is None: if provider_vector_db_id is None:
provider_vector_db_id = vector_db_id provider_vector_db_id = vector_db_id
@ -62,6 +63,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
"provider_resource_id": provider_vector_db_id, "provider_resource_id": provider_vector_db_id,
"embedding_model": embedding_model, "embedding_model": embedding_model,
"embedding_dimension": model.metadata["embedding_dimension"], "embedding_dimension": model.metadata["embedding_dimension"],
"vector_db_name": vector_db_name,
} }
vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data) vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data)
await self.register_object(vector_db) await self.register_object(vector_db)

View file

@ -47,6 +47,7 @@ from llama_stack.distribution.server.routes import (
initialize_route_impls, initialize_route_impls,
) )
from llama_stack.distribution.stack import ( from llama_stack.distribution.stack import (
cast_image_name_to_string,
construct_stack, construct_stack,
replace_env_vars, replace_env_vars,
validate_env_pair, validate_env_pair,
@ -439,7 +440,7 @@ def main(args: argparse.Namespace | None = None):
logger.error(f"Error: {str(e)}") logger.error(f"Error: {str(e)}")
sys.exit(1) sys.exit(1)
config = replace_env_vars(config_contents) config = replace_env_vars(config_contents)
config = StackRunConfig(**config) config = StackRunConfig(**cast_image_name_to_string(config))
# now that the logger is initialized, print the line about which type of config we are using. # now that the logger is initialized, print the line about which type of config we are using.
logger.info(log_line) logger.info(log_line)

View file

@ -267,6 +267,13 @@ def _convert_string_to_proper_type(value: str) -> Any:
return value return value
def cast_image_name_to_string(config_dict: dict[str, Any]) -> dict[str, Any]:
"""Ensure that any value for a key 'image_name' in a config_dict is a string"""
if "image_name" in config_dict and config_dict["image_name"] is not None:
config_dict["image_name"] = str(config_dict["image_name"])
return config_dict
def validate_env_pair(env_pair: str) -> tuple[str, str]: def validate_env_pair(env_pair: str) -> tuple[str, str]:
"""Validate and split an environment variable key-value pair.""" """Validate and split an environment variable key-value pair."""
try: try:

View file

@ -217,7 +217,6 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
embedding_model: str | None = None, embedding_model: str | None = None,
embedding_dimension: int | None = 384, embedding_dimension: int | None = 384,
provider_id: str | None = None, provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject: ) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma") raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")

View file

@ -214,7 +214,6 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
embedding_model: str | None = None, embedding_model: str | None = None,
embedding_dimension: int | None = 384, embedding_dimension: int | None = 384,
provider_id: str | None = None, provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject: ) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant") raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -172,8 +172,9 @@ class OpenAIVectorStoreMixin(ABC):
provider_vector_db_id: str | None = None, provider_vector_db_id: str | None = None,
) -> VectorStoreObject: ) -> VectorStoreObject:
"""Creates a vector store.""" """Creates a vector store."""
store_id = name or str(uuid.uuid4())
created_at = int(time.time()) created_at = int(time.time())
# Derive the canonical vector_db_id (allow override, else generate)
vector_db_id = provider_vector_db_id or f"vs_{uuid.uuid4()}"
if provider_id is None: if provider_id is None:
raise ValueError("Provider ID is required") raise ValueError("Provider ID is required")
@ -181,19 +182,19 @@ class OpenAIVectorStoreMixin(ABC):
if embedding_model is None: if embedding_model is None:
raise ValueError("Embedding model is required") raise ValueError("Embedding model is required")
# Use provided embedding dimension or default to 384 # Embedding dimension is required (defaulted to 384 if not provided)
if embedding_dimension is None: if embedding_dimension is None:
raise ValueError("Embedding dimension is required") raise ValueError("Embedding dimension is required")
provider_vector_db_id = provider_vector_db_id or store_id # Register the VectorDB backing this vector store
vector_db = VectorDB( vector_db = VectorDB(
identifier=store_id, identifier=vector_db_id,
embedding_dimension=embedding_dimension, embedding_dimension=embedding_dimension,
embedding_model=embedding_model, embedding_model=embedding_model,
provider_id=provider_id, provider_id=provider_id,
provider_resource_id=provider_vector_db_id, provider_resource_id=vector_db_id,
vector_db_name=name,
) )
# Register the vector DB
await self.register_vector_db(vector_db) await self.register_vector_db(vector_db)
# Create OpenAI vector store metadata # Create OpenAI vector store metadata
@ -207,11 +208,11 @@ class OpenAIVectorStoreMixin(ABC):
in_progress=0, in_progress=0,
total=0, total=0,
) )
store_info = { store_info: dict[str, Any] = {
"id": store_id, "id": vector_db_id,
"object": "vector_store", "object": "vector_store",
"created_at": created_at, "created_at": created_at,
"name": store_id, "name": name,
"usage_bytes": 0, "usage_bytes": 0,
"file_counts": file_counts.model_dump(), "file_counts": file_counts.model_dump(),
"status": status, "status": status,
@ -231,18 +232,18 @@ class OpenAIVectorStoreMixin(ABC):
store_info["metadata"] = metadata store_info["metadata"] = metadata
# Save to persistent storage (provider-specific) # Save to persistent storage (provider-specific)
await self._save_openai_vector_store(store_id, store_info) await self._save_openai_vector_store(vector_db_id, store_info)
# Store in memory cache # Store in memory cache
self.openai_vector_stores[store_id] = store_info self.openai_vector_stores[vector_db_id] = store_info
# Now that our vector store is created, attach any files that were provided # Now that our vector store is created, attach any files that were provided
file_ids = file_ids or [] file_ids = file_ids or []
tasks = [self.openai_attach_file_to_vector_store(store_id, file_id) for file_id in file_ids] tasks = [self.openai_attach_file_to_vector_store(vector_db_id, file_id) for file_id in file_ids]
await asyncio.gather(*tasks) await asyncio.gather(*tasks)
# Get the updated store info and return it # Get the updated store info and return it
store_info = self.openai_vector_stores[store_id] store_info = self.openai_vector_stores[vector_db_id]
return VectorStoreObject.model_validate(store_info) return VectorStoreObject.model_validate(store_info)
async def openai_list_vector_stores( async def openai_list_vector_stores(

View file

@ -821,6 +821,59 @@ def test_openai_vector_store_update_file(compat_client_with_empty_stores, client
assert retrieved_file.attributes["foo"] == "baz" assert retrieved_file.attributes["foo"] == "baz"
def test_create_vector_store_files_duplicate_vector_store_name(compat_client_with_empty_stores, client_with_models):
"""
This test confirms that client.vector_stores.create() creates a unique ID
"""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
skip_if_provider_doesnt_support_openai_vector_store_files_api(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files create is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store with files
file_ids = []
for i in range(3):
with BytesIO(f"This is a test file {i}".encode()) as file_buffer:
file_buffer.name = f"openai_test_{i}.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
file_ids.append(file.id)
vector_store = compat_client.vector_stores.create(
name="test_store_with_files",
)
assert vector_store.file_counts.completed == 0
assert vector_store.file_counts.total == 0
assert vector_store.file_counts.cancelled == 0
assert vector_store.file_counts.failed == 0
assert vector_store.file_counts.in_progress == 0
vector_store2 = compat_client.vector_stores.create(
name="test_store_with_files",
)
vector_stores_list = compat_client.vector_stores.list()
assert len(vector_stores_list.data) == 2
created_file = compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file_ids[0],
)
assert created_file.status == "completed"
_ = compat_client.vector_stores.delete(vector_store2.id)
created_file_from_non_deleted_vector_store = compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file_ids[1],
)
assert created_file_from_non_deleted_vector_store.status == "completed"
vector_stores_list_post_delete = compat_client.vector_stores.list()
assert len(vector_stores_list_post_delete.data) == 1
@pytest.mark.skip(reason="Client library needs to be scaffolded to support search_mode parameter") @pytest.mark.skip(reason="Client library needs to be scaffolded to support search_mode parameter")
def test_openai_vector_store_search_modes(): def test_openai_vector_store_search_modes():
"""Test OpenAI vector store search with different search modes. """Test OpenAI vector store search with different search modes.

View file

@ -15,6 +15,37 @@ from llama_stack.distribution.configure import (
) )
@pytest.fixture
def config_with_image_name_int():
return yaml.safe_load(
f"""
version: {LLAMA_STACK_RUN_CONFIG_VERSION}
image_name: 1234
apis_to_serve: []
built_at: {datetime.now().isoformat()}
providers:
inference:
- provider_id: provider1
provider_type: inline::meta-reference
config: {{}}
safety:
- provider_id: provider1
provider_type: inline::meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
disable_input_check: false
disable_output_check: false
enable_prompt_guard: false
memory:
- provider_id: provider1
provider_type: inline::meta-reference
config: {{}}
"""
)
@pytest.fixture @pytest.fixture
def up_to_date_config(): def up_to_date_config():
return yaml.safe_load( return yaml.safe_load(
@ -125,3 +156,8 @@ def test_parse_and_maybe_upgrade_config_old_format(old_config):
def test_parse_and_maybe_upgrade_config_invalid(invalid_config): def test_parse_and_maybe_upgrade_config_invalid(invalid_config):
with pytest.raises(KeyError): with pytest.raises(KeyError):
parse_and_maybe_upgrade_config(invalid_config) parse_and_maybe_upgrade_config(invalid_config)
def test_parse_and_maybe_upgrade_config_image_name_int(config_with_image_name_int):
result = parse_and_maybe_upgrade_config(config_with_image_name_int)
assert isinstance(result.image_name, str)