apply Reranker class at chromaDB

This commit is contained in:
kimbwook 2025-08-18 15:59:53 +08:00
parent c66ebae9b6
commit db0ce0d7e2
No known key found for this signature in database
GPG key ID: 13B032C99CBD373A
5 changed files with 175 additions and 14 deletions

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import heapq
import json
import logging
from typing import Any
@ -30,6 +31,7 @@ from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
VectorDBWithIndex,
)
from llama_stack.providers.utils.vector_io.vector_utils import Reranker
from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
@ -161,7 +163,55 @@ class ChromaIndex(EmbeddingIndex):
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in Chroma")
"""
Hybrid search combining vector similarity and keyword search using configurable reranking.
Args:
embedding: The query embedding vector
query_string: The text query for keyword search
k: Number of results to return
score_threshold: Minimum similarity score threshold
reranker_type: Type of reranker to use ("rrf" or "weighted")
reranker_params: Parameters for the reranker
Returns:
QueryChunksResponse with combined results
"""
if reranker_params is None:
reranker_params = {}
# Get results from both search methods
vector_response = await self.query_vector(embedding, k, score_threshold)
keyword_response = await self.query_keyword(query_string, k, score_threshold)
# Convert responses to score dictionaries using chunk_id
vector_scores = {
chunk.chunk_id: score for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
}
keyword_scores = {
chunk.chunk_id: score
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
}
# Combine scores using the reranking utility
combined_scores = Reranker.combine_search_results(vector_scores, keyword_scores, reranker_type, reranker_params)
# Efficient top-k selection because it only tracks the k best candidates it's seen so far
top_k_items = heapq.nlargest(k, combined_scores.items(), key=lambda x: x[1])
# Filter by score threshold
filtered_items = [(doc_id, score) for doc_id, score in top_k_items if score >= score_threshold]
# Create a map of chunk_id to chunk for both responses
chunk_map = {c.chunk_id: c for c in vector_response.chunks + keyword_response.chunks}
# Use the map to look up chunks by their IDs
chunks = []
scores = []
for doc_id, score in filtered_items:
if doc_id in chunk_map:
chunks.append(chunk_map[doc_id])
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):