mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: support filters in file search (#2472)
# What does this PR do? Move to use vector_stores.search for file search tool in Responses, which supports filters. closes #2435 ## Test Plan Added e2e test with fitlers. myenv ❯ llama stack run llama_stack/templates/fireworks/run.yaml pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search and filters' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.3-70B-Instruct
This commit is contained in:
parent
fd37a50e6a
commit
db2cd9e8f3
13 changed files with 449 additions and 63 deletions
|
@ -9,6 +9,7 @@ from typing import Annotated, Any, Literal
|
|||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from llama_stack.apis.vector_io import SearchRankingOptions as FileSearchRankingOptions
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema
|
||||
|
||||
# NOTE(ashwin): this file is literally a copy of the OpenAI responses API schema. We should probably
|
||||
|
@ -400,11 +401,6 @@ class OpenAIResponseInputToolFunction(BaseModel):
|
|||
strict: bool | None = None
|
||||
|
||||
|
||||
class FileSearchRankingOptions(BaseModel):
|
||||
ranker: str | None = None
|
||||
score_threshold: float | None = Field(default=0.0, ge=0.0, le=1.0)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFileSearch(BaseModel):
|
||||
type: Literal["file_search"] = "file_search"
|
||||
|
|
|
@ -157,6 +157,11 @@ VectorStoreChunkingStrategy = Annotated[
|
|||
register_schema(VectorStoreChunkingStrategy, name="VectorStoreChunkingStrategy")
|
||||
|
||||
|
||||
class SearchRankingOptions(BaseModel):
|
||||
ranker: str | None = None
|
||||
score_threshold: float | None = Field(default=0.0, ge=0.0, le=1.0)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileLastError(BaseModel):
|
||||
code: Literal["server_error"] | Literal["rate_limit_exceeded"]
|
||||
|
@ -319,7 +324,7 @@ class VectorIO(Protocol):
|
|||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
"""Search for chunks in a vector store.
|
||||
|
|
|
@ -14,6 +14,7 @@ from llama_stack.apis.models import ModelType
|
|||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
|
@ -246,7 +247,7 @@ class VectorIORouter(VectorIO):
|
|||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
|
||||
|
|
|
@ -85,6 +85,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
tool_groups_api=self.tool_groups_api,
|
||||
tool_runtime_api=self.tool_runtime_api,
|
||||
responses_store=self.responses_store,
|
||||
vector_io_api=self.vector_io_api,
|
||||
)
|
||||
|
||||
async def create_agent(
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
|
@ -42,6 +43,7 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseText,
|
||||
OpenAIResponseTextFormat,
|
||||
)
|
||||
from llama_stack.apis.common.content_types import TextContentItem
|
||||
from llama_stack.apis.inference.inference import (
|
||||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
|
@ -64,7 +66,8 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
from llama_stack.apis.tools import RAGQueryConfig, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
@ -214,11 +217,13 @@ class OpenAIResponsesImpl:
|
|||
tool_groups_api: ToolGroups,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
responses_store: ResponsesStore,
|
||||
vector_io_api: VectorIO, # VectorIO
|
||||
):
|
||||
self.inference_api = inference_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.responses_store = responses_store
|
||||
self.vector_io_api = vector_io_api
|
||||
|
||||
async def _prepend_previous_response(
|
||||
self, input: str | list[OpenAIResponseInput], previous_response_id: str | None = None
|
||||
|
@ -666,6 +671,71 @@ class OpenAIResponsesImpl:
|
|||
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
|
||||
return chat_tools, mcp_tool_to_server, mcp_list_message
|
||||
|
||||
async def _execute_knowledge_search_via_vector_store(
|
||||
self,
|
||||
query: str,
|
||||
response_file_search_tool: OpenAIResponseInputToolFileSearch,
|
||||
) -> ToolInvocationResult:
|
||||
"""Execute knowledge search using vector_stores.search API with filters support."""
|
||||
search_results = []
|
||||
|
||||
# Create search tasks for all vector stores
|
||||
async def search_single_store(vector_store_id):
|
||||
try:
|
||||
search_response = await self.vector_io_api.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=response_file_search_tool.filters,
|
||||
max_num_results=response_file_search_tool.max_num_results,
|
||||
ranking_options=response_file_search_tool.ranking_options,
|
||||
rewrite_query=False,
|
||||
)
|
||||
return search_response.data
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to search vector store {vector_store_id}: {e}")
|
||||
return []
|
||||
|
||||
# Run all searches in parallel using gather
|
||||
search_tasks = [search_single_store(vid) for vid in response_file_search_tool.vector_store_ids]
|
||||
all_results = await asyncio.gather(*search_tasks)
|
||||
|
||||
# Flatten results
|
||||
for results in all_results:
|
||||
search_results.extend(results)
|
||||
|
||||
# Convert search results to tool result format matching memory.py
|
||||
# Format the results as interleaved content similar to memory.py
|
||||
content_items = []
|
||||
content_items.append(
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(search_results)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
)
|
||||
|
||||
for i, result_item in enumerate(search_results):
|
||||
chunk_text = result_item.content[0].text if result_item.content else ""
|
||||
metadata_text = f"document_id: {result_item.file_id}, score: {result_item.score}"
|
||||
if result_item.attributes:
|
||||
metadata_text += f", attributes: {result_item.attributes}"
|
||||
text_content = f"[{i + 1}] {metadata_text}\n{chunk_text}\n"
|
||||
content_items.append(TextContentItem(text=text_content))
|
||||
|
||||
content_items.append(TextContentItem(text="END of knowledge_search tool results.\n"))
|
||||
content_items.append(
|
||||
TextContentItem(
|
||||
text=f'The above results were retrieved to help answer the user\'s query: "{query}". Use them as supporting information only in answering this query.\n',
|
||||
)
|
||||
)
|
||||
|
||||
return ToolInvocationResult(
|
||||
content=content_items,
|
||||
metadata={
|
||||
"document_ids": [r.file_id for r in search_results],
|
||||
"chunks": [r.content[0].text if r.content else "" for r in search_results],
|
||||
"scores": [r.score for r in search_results],
|
||||
},
|
||||
)
|
||||
|
||||
async def _execute_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
|
@ -693,21 +763,19 @@ class OpenAIResponsesImpl:
|
|||
tool_name=function.name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
else:
|
||||
if function.name == "knowledge_search":
|
||||
response_file_search_tool = next(
|
||||
t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)
|
||||
elif function.name == "knowledge_search":
|
||||
response_file_search_tool = next(
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)), None
|
||||
)
|
||||
if response_file_search_tool:
|
||||
# Use vector_stores.search API instead of knowledge_search tool
|
||||
# to support filters and ranking_options
|
||||
query = tool_kwargs.get("query", "")
|
||||
result = await self._execute_knowledge_search_via_vector_store(
|
||||
query=query,
|
||||
response_file_search_tool=response_file_search_tool,
|
||||
)
|
||||
if response_file_search_tool:
|
||||
if response_file_search_tool.filters:
|
||||
logger.warning("Filters are not yet supported for file_search tool")
|
||||
if response_file_search_tool.ranking_options:
|
||||
logger.warning("Ranking options are not yet supported for file_search tool")
|
||||
tool_kwargs["vector_db_ids"] = response_file_search_tool.vector_store_ids
|
||||
tool_kwargs["query_config"] = RAGQueryConfig(
|
||||
mode="vector",
|
||||
max_chunks=response_file_search_tool.max_num_results,
|
||||
)
|
||||
else:
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=function.name,
|
||||
kwargs=tool_kwargs,
|
||||
|
|
|
@ -17,6 +17,7 @@ from llama_stack.apis.vector_dbs import VectorDB
|
|||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
|
@ -249,7 +250,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
|
|
@ -19,6 +19,7 @@ from llama_stack.apis.vector_dbs import VectorDB
|
|||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
|
@ -247,7 +248,7 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
|
|
@ -17,6 +17,7 @@ from llama_stack.apis.vector_dbs import VectorDB
|
|||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
|
@ -249,7 +250,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
|
|
@ -15,6 +15,7 @@ from llama_stack.apis.files import Files
|
|||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorStoreContent,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
|
@ -296,7 +297,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
# search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
|
@ -314,7 +315,11 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
search_query = query
|
||||
|
||||
try:
|
||||
score_threshold = ranking_options.get("score_threshold", 0.0) if ranking_options else 0.0
|
||||
score_threshold = (
|
||||
ranking_options.score_threshold
|
||||
if ranking_options and ranking_options.score_threshold is not None
|
||||
else 0.0
|
||||
)
|
||||
params = {
|
||||
"max_chunks": max_num_results * CHUNK_MULTIPLIER,
|
||||
"score_threshold": score_threshold,
|
||||
|
@ -399,12 +404,49 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
def _matches_filters(self, metadata: dict[str, Any], filters: dict[str, Any]) -> bool:
|
||||
"""Check if metadata matches the provided filters."""
|
||||
for key, value in filters.items():
|
||||
if not filters:
|
||||
return True
|
||||
|
||||
filter_type = filters.get("type")
|
||||
|
||||
if filter_type in ["eq", "ne", "gt", "gte", "lt", "lte"]:
|
||||
# Comparison filter
|
||||
key = filters.get("key")
|
||||
value = filters.get("value")
|
||||
|
||||
if key not in metadata:
|
||||
return False
|
||||
if metadata[key] != value:
|
||||
return False
|
||||
return True
|
||||
|
||||
metadata_value = metadata[key]
|
||||
|
||||
if filter_type == "eq":
|
||||
return bool(metadata_value == value)
|
||||
elif filter_type == "ne":
|
||||
return bool(metadata_value != value)
|
||||
elif filter_type == "gt":
|
||||
return bool(metadata_value > value)
|
||||
elif filter_type == "gte":
|
||||
return bool(metadata_value >= value)
|
||||
elif filter_type == "lt":
|
||||
return bool(metadata_value < value)
|
||||
elif filter_type == "lte":
|
||||
return bool(metadata_value <= value)
|
||||
else:
|
||||
raise ValueError(f"Unsupported filter type: {filter_type}")
|
||||
|
||||
elif filter_type == "and":
|
||||
# All filters must match
|
||||
sub_filters = filters.get("filters", [])
|
||||
return all(self._matches_filters(metadata, f) for f in sub_filters)
|
||||
|
||||
elif filter_type == "or":
|
||||
# At least one filter must match
|
||||
sub_filters = filters.get("filters", [])
|
||||
return any(self._matches_filters(metadata, f) for f in sub_filters)
|
||||
|
||||
else:
|
||||
# Unknown filter type, default to no match
|
||||
raise ValueError(f"Unsupported filter type: {filter_type}")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue