mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat(responses): implement full multi-turn support (#2295)
I think the implementation needs more simplification. Spent way too much time trying to get the tests pass with models not co-operating :( Finally had to switch claude-sonnet to get things to pass reliably. ### Test Plan ``` export TAVILY_SEARCH_API_KEY=... export OPENAI_API_KEY=... uv run pytest -p no:warnings \ -s -v tests/verifications/openai_api/test_responses.py \ --provider=stack:starter \ --model openai/gpt-4o ```
This commit is contained in:
parent
cac7d404a2
commit
dbe4e84aca
9 changed files with 593 additions and 136 deletions
|
@ -604,6 +604,7 @@ class Agents(Protocol):
|
|||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
|
||||
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Create a new OpenAI response.
|
||||
|
||||
|
|
|
@ -325,9 +325,10 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> OpenAIResponseObject:
|
||||
return await self.openai_responses_impl.create_openai_response(
|
||||
input, model, instructions, previous_response_id, store, stream, temperature, tools
|
||||
input, model, instructions, previous_response_id, store, stream, temperature, tools, max_infer_iters
|
||||
)
|
||||
|
||||
async def list_openai_responses(
|
||||
|
|
|
@ -258,6 +258,18 @@ class OpenAIResponsesImpl:
|
|||
"""
|
||||
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
|
||||
|
||||
def _is_function_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
tools: list[OpenAIResponseInputTool],
|
||||
) -> bool:
|
||||
if not tool_call.function:
|
||||
return False
|
||||
for t in tools:
|
||||
if t.type == "function" and t.name == tool_call.function.name:
|
||||
return True
|
||||
return False
|
||||
|
||||
async def _process_response_choices(
|
||||
self,
|
||||
chat_response: OpenAIChatCompletion,
|
||||
|
@ -270,7 +282,7 @@ class OpenAIResponsesImpl:
|
|||
for choice in chat_response.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
# Assume if the first tool is a function, all tools are functions
|
||||
if tools[0].type == "function":
|
||||
if self._is_function_tool_call(choice.message.tool_calls[0], tools):
|
||||
for tool_call in choice.message.tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
|
@ -332,6 +344,7 @@ class OpenAIResponsesImpl:
|
|||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
):
|
||||
stream = False if stream is None else stream
|
||||
|
||||
|
@ -358,58 +371,100 @@ class OpenAIResponsesImpl:
|
|||
temperature=temperature,
|
||||
)
|
||||
|
||||
inference_result = await self.inference_api.openai_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
# Fork to streaming vs non-streaming - let each handle ALL inference rounds
|
||||
if stream:
|
||||
return self._create_streaming_response(
|
||||
inference_result=inference_result,
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
else:
|
||||
return await self._create_non_streaming_response(
|
||||
inference_result=inference_result,
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
|
||||
async def _create_non_streaming_response(
|
||||
self,
|
||||
inference_result: Any,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
max_infer_iters: int | None,
|
||||
) -> OpenAIResponseObject:
|
||||
chat_response = OpenAIChatCompletion(**inference_result.model_dump())
|
||||
# Implement tool execution loop - handle ALL inference rounds including the first
|
||||
n_iter = 0
|
||||
messages = ctx.messages.copy()
|
||||
current_response = None
|
||||
|
||||
# Process response choices (tool execution and message creation)
|
||||
output_messages.extend(
|
||||
await self._process_response_choices(
|
||||
chat_response=chat_response,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
while True:
|
||||
# Do inference (including the first one)
|
||||
inference_result = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=messages,
|
||||
tools=ctx.tools,
|
||||
stream=False,
|
||||
temperature=ctx.temperature,
|
||||
)
|
||||
)
|
||||
current_response = OpenAIChatCompletion(**inference_result.model_dump())
|
||||
|
||||
# Separate function vs non-function tool calls
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
|
||||
for choice in current_response.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if self._is_function_tool_call(tool_call, tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
|
||||
# Process response choices based on tool call types
|
||||
if function_tool_calls:
|
||||
# For function tool calls, use existing logic and return immediately
|
||||
current_output_messages = await self._process_response_choices(
|
||||
chat_response=current_response,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
)
|
||||
output_messages.extend(current_output_messages)
|
||||
break
|
||||
elif non_function_tool_calls:
|
||||
# For non-function tool calls, execute them and continue loop
|
||||
for choice in current_response.choices:
|
||||
tool_outputs, tool_response_messages = await self._execute_tool_calls_only(choice, ctx)
|
||||
output_messages.extend(tool_outputs)
|
||||
|
||||
# Add assistant message and tool responses to messages for next iteration
|
||||
messages.append(choice.message)
|
||||
messages.extend(tool_response_messages)
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= (max_infer_iters or 10):
|
||||
break
|
||||
|
||||
# Continue with next iteration of the loop
|
||||
continue
|
||||
else:
|
||||
# No tool calls - convert response to message and we're done
|
||||
for choice in current_response.choices:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
break
|
||||
|
||||
response = OpenAIResponseObject(
|
||||
created_at=chat_response.created,
|
||||
created_at=current_response.created,
|
||||
id=f"resp-{uuid.uuid4()}",
|
||||
model=model,
|
||||
object="response",
|
||||
|
@ -429,13 +484,13 @@ class OpenAIResponsesImpl:
|
|||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
inference_result: Any,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
max_infer_iters: int | None,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# Create initial response and emit response.created immediately
|
||||
response_id = f"resp-{uuid.uuid4()}"
|
||||
|
@ -453,87 +508,135 @@ class OpenAIResponsesImpl:
|
|||
# Emit response.created immediately
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
|
||||
|
||||
# For streaming, inference_result is an async iterator of chunks
|
||||
# Stream chunks and emit delta events as they arrive
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
sequence_number = 0
|
||||
# Implement tool execution loop for streaming - handle ALL inference rounds including the first
|
||||
n_iter = 0
|
||||
messages = ctx.messages.copy()
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in inference_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks, using their index as the aggregation key
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
# Don't attempt to concatenate arguments if we don't have any new arguments
|
||||
if tool_call.function.arguments:
|
||||
# Guard against an initial None argument before we concatenate
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
chat_response_obj = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
|
||||
# Process response choices (tool execution and message creation)
|
||||
output_messages.extend(
|
||||
await self._process_response_choices(
|
||||
chat_response=chat_response_obj,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
while True:
|
||||
# Do inference (including the first one) - streaming
|
||||
current_inference_result = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=messages,
|
||||
tools=ctx.tools,
|
||||
stream=True,
|
||||
temperature=ctx.temperature,
|
||||
)
|
||||
)
|
||||
|
||||
# Process streaming chunks and build complete response
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
sequence_number = 0
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in current_inference_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
# Don't attempt to concatenate arguments if we don't have any new argumentsAdd commentMore actions
|
||||
if tool_call.function.arguments:
|
||||
# Guard against an initial None argument before we concatenate
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
current_response = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
|
||||
# Separate function vs non-function tool calls
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
|
||||
for choice in current_response.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if self._is_function_tool_call(tool_call, tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
|
||||
# Process response choices based on tool call types
|
||||
if function_tool_calls:
|
||||
# For function tool calls, use existing logic and break
|
||||
current_output_messages = await self._process_response_choices(
|
||||
chat_response=current_response,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
)
|
||||
output_messages.extend(current_output_messages)
|
||||
break
|
||||
elif non_function_tool_calls:
|
||||
# For non-function tool calls, execute them and continue loop
|
||||
for choice in current_response.choices:
|
||||
tool_outputs, tool_response_messages = await self._execute_tool_calls_only(choice, ctx)
|
||||
output_messages.extend(tool_outputs)
|
||||
|
||||
# Add assistant message and tool responses to messages for next iteration
|
||||
messages.append(choice.message)
|
||||
messages.extend(tool_response_messages)
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= (max_infer_iters or 10):
|
||||
break
|
||||
|
||||
# Continue with next iteration of the loop
|
||||
continue
|
||||
else:
|
||||
# No tool calls - convert response to message and we're done
|
||||
for choice in current_response.choices:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
break
|
||||
|
||||
# Create final response
|
||||
final_response = OpenAIResponseObject(
|
||||
|
@ -646,6 +749,30 @@ class OpenAIResponsesImpl:
|
|||
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
|
||||
return chat_tools, mcp_tool_to_server, mcp_list_message
|
||||
|
||||
async def _execute_tool_calls_only(
|
||||
self,
|
||||
choice: OpenAIChoice,
|
||||
ctx: ChatCompletionContext,
|
||||
) -> tuple[list[OpenAIResponseOutput], list[OpenAIMessageParam]]:
|
||||
"""Execute tool calls and return output messages and tool response messages for next inference."""
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
tool_response_messages: list[OpenAIMessageParam] = []
|
||||
|
||||
if not isinstance(choice.message, OpenAIAssistantMessageParam):
|
||||
return output_messages, tool_response_messages
|
||||
|
||||
if not choice.message.tool_calls:
|
||||
return output_messages, tool_response_messages
|
||||
|
||||
for tool_call in choice.message.tool_calls:
|
||||
tool_call_log, further_input = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if further_input:
|
||||
tool_response_messages.append(further_input)
|
||||
|
||||
return output_messages, tool_response_messages
|
||||
|
||||
async def _execute_tool_and_return_final_output(
|
||||
self,
|
||||
choice: OpenAIChoice,
|
||||
|
@ -772,5 +899,8 @@ class OpenAIResponsesImpl:
|
|||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(result.content)}")
|
||||
input_message = OpenAIToolMessageParam(content=content, tool_call_id=tool_call_id)
|
||||
else:
|
||||
text = str(error_exc)
|
||||
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
|
||||
|
||||
return message, input_message
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue