enable streaming support, use openai-python instead of httpx

This commit is contained in:
Matthew Farrellee 2024-11-04 10:22:29 -05:00
parent 2dd8c4bcb6
commit dbe665ed19
7 changed files with 1037 additions and 341 deletions

View file

@ -5,9 +5,8 @@
# the root directory of this source tree.
import warnings
from typing import Dict, List, Optional, Union
from typing import AsyncIterator, Dict, List, Optional, Union
import httpx
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import (
InterleavedTextMedia,
@ -17,6 +16,7 @@ from llama_models.llama3.api.datatypes import (
ToolPromptFormat,
)
from llama_models.sku_list import CoreModelId
from openai import APIConnectionError, AsyncOpenAI
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -32,7 +32,12 @@ from llama_stack.apis.inference import (
)
from ._config import NVIDIAConfig
from ._utils import check_health, convert_chat_completion_request, parse_completion
from ._openai_utils import (
convert_chat_completion_request,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
)
from ._utils import check_health
SUPPORTED_MODELS: Dict[CoreModelId, str] = {
CoreModelId.llama3_8b_instruct: "meta/llama3-8b-instruct",
@ -71,17 +76,12 @@ class NVIDIAInferenceAdapter(Inference):
# )
self._config = config
@property
def _headers(self) -> dict:
return {
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
**(
{b"Authorization": f"Bearer {self._config.api_key}"}
if self._config.api_key
else {}
),
}
# make sure the client lives longer than any async calls
self._client = AsyncOpenAI(
base_url=f"{self._config.base_url}/v1",
api_key=self._config.api_key or "NO KEY",
timeout=self._config.timeout,
)
async def list_models(self) -> List[ModelDef]:
# TODO(mf): filter by available models
@ -98,7 +98,7 @@ class NVIDIAInferenceAdapter(Inference):
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
raise NotImplementedError()
async def embeddings(
@ -121,56 +121,37 @@ class NVIDIAInferenceAdapter(Inference):
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]:
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
if tool_prompt_format:
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring")
if stream:
raise ValueError("Streamed completions are not supported")
await check_health(self._config) # this raises errors
request = ChatCompletionRequest(
model=SUPPORTED_MODELS[CoreModelId(model)],
messages=messages,
sampling_params=sampling_params,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
request = convert_chat_completion_request(
request=ChatCompletionRequest(
model=SUPPORTED_MODELS[CoreModelId(model)],
messages=messages,
sampling_params=sampling_params,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
),
n=1,
)
async with httpx.AsyncClient(timeout=self._config.timeout) as client:
try:
response = await client.post(
f"{self._config.base_url}/v1/chat/completions",
headers=self._headers,
json=convert_chat_completion_request(request, n=1),
)
except httpx.ReadTimeout as e:
raise TimeoutError(
f"Request timed out. timeout set to {self._config.timeout}. Use `llama stack configure ...` to adjust it."
) from e
if response.status_code == 401:
raise PermissionError(
"Unauthorized. Please check your API key, reconfigure, and try again."
)
if response.status_code == 400:
raise ValueError(
f"Bad request. Please check the request and try again. Detail: {response.text}"
)
if response.status_code == 404:
raise ValueError(
"Model not found. Please check the model name and try again."
)
assert (
response.status_code == 200
), f"Failed to get completion: {response.text}"
try:
response = await self._client.chat.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(
f"Failed to connect to NVIDIA NIM at {self._config.base_url}: {e}"
) from e
if stream:
return convert_openai_chat_completion_stream(response)
else:
# we pass n=1 to get only one completion
return parse_completion(response.json()["choices"][0])
return convert_openai_chat_completion_choice(response.choices[0])

View file

@ -0,0 +1,430 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import warnings
from typing import Any, AsyncGenerator, Dict, Generator, List, Optional
from llama_models.llama3.api.datatypes import (
CompletionMessage,
StopReason,
TokenLogProbs,
ToolCall,
)
from openai import AsyncStream
from openai.types.chat import ChatCompletionChunk as OpenAIChatCompletionChunk
from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_message_tool_call import (
ChatCompletionMessageToolCall as OpenAIChatCompletionMessageToolCall,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
Message,
ToolCallDelta,
ToolCallParseStatus,
)
def _convert_message(message: Message) -> Dict:
"""
Convert a Message to an OpenAI API-compatible dictionary.
"""
out_dict = message.dict()
# Llama Stack uses role="ipython" for tool call messages, OpenAI uses "tool"
if out_dict["role"] == "ipython":
out_dict.update(role="tool")
if "stop_reason" in out_dict:
out_dict.update(stop_reason=out_dict["stop_reason"].value)
# TODO(mf): tool_calls
return out_dict
def convert_chat_completion_request(
request: ChatCompletionRequest,
n: int = 1,
) -> dict:
"""
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
"""
# model -> model
# messages -> messages
# sampling_params TODO(mattf): review strategy
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
# strategy=top_k -> nvext.top_k = top_k
# temperature -> temperature
# top_p -> top_p
# top_k -> nvext.top_k
# max_tokens -> max_tokens
# repetition_penalty -> nvext.repetition_penalty
# tools -> tools
# tool_choice ("auto", "required") -> tool_choice
# tool_prompt_format -> TBD
# stream -> stream
# logprobs -> logprobs
nvext = {}
payload: Dict[str, Any] = dict(
model=request.model,
messages=[_convert_message(message) for message in request.messages],
stream=request.stream,
n=n,
extra_body=dict(nvext=nvext),
extra_headers={
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
},
)
if request.tools:
payload.update(tools=request.tools)
if request.tool_choice:
payload.update(
tool_choice=request.tool_choice.value
) # we cannot include tool_choice w/o tools, server will complain
if request.logprobs:
payload.update(logprobs=True)
payload.update(top_logprobs=request.logprobs.top_k)
if request.sampling_params:
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
if request.sampling_params.max_tokens:
payload.update(max_tokens=request.sampling_params.max_tokens)
if request.sampling_params.strategy == "top_p":
nvext.update(top_k=-1)
payload.update(top_p=request.sampling_params.top_p)
elif request.sampling_params.strategy == "top_k":
if (
request.sampling_params.top_k != -1
and request.sampling_params.top_k < 1
):
warnings.warn("top_k must be -1 or >= 1")
nvext.update(top_k=request.sampling_params.top_k)
elif request.sampling_params.strategy == "greedy":
nvext.update(top_k=-1)
payload.update(temperature=request.sampling_params.temperature)
return payload
def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
"""
Convert an OpenAI chat completion finish_reason to a StopReason.
finish_reason: Literal["stop", "length", "tool_calls", ...]
- stop: model hit a natural stop point or a provided stop sequence
- length: maximum number of tokens specified in the request was reached
- tool_calls: model called a tool
->
class StopReason(Enum):
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
# TODO(mf): are end_of_turn and end_of_message semantics correct?
return {
"stop": StopReason.end_of_turn,
"length": StopReason.out_of_tokens,
"tool_calls": StopReason.end_of_message,
}.get(finish_reason, StopReason.end_of_turn)
def _convert_openai_tool_calls(
tool_calls: List[OpenAIChatCompletionMessageToolCall],
) -> List[ToolCall]:
"""
Convert an OpenAI ChatCompletionMessageToolCall list into a list of ToolCall.
OpenAI ChatCompletionMessageToolCall:
id: str
function: Function
type: Literal["function"]
OpenAI Function:
arguments: str
name: str
->
ToolCall:
call_id: str
tool_name: str
arguments: Dict[str, ...]
"""
if not tool_calls:
return [] # CompletionMessage tool_calls is not optional
return [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=json.loads(call.function.arguments),
)
for call in tool_calls
]
def _convert_openai_logprobs(
logprobs: OpenAIChoiceLogprobs,
) -> Optional[List[TokenLogProbs]]:
"""
Convert an OpenAI ChoiceLogprobs into a list of TokenLogProbs.
OpenAI ChoiceLogprobs:
content: Optional[List[ChatCompletionTokenLogprob]]
OpenAI ChatCompletionTokenLogprob:
token: str
logprob: float
top_logprobs: List[TopLogprob]
OpenAI TopLogprob:
token: str
logprob: float
->
TokenLogProbs:
logprobs_by_token: Dict[str, float]
- token, logprob
"""
if not logprobs:
return None
return [
TokenLogProbs(
logprobs_by_token={
logprobs.token: logprobs.logprob for logprobs in content.top_logprobs
}
)
for content in logprobs.content
]
def convert_openai_chat_completion_choice(
choice: OpenAIChoice,
) -> ChatCompletionResponse:
"""
Convert an OpenAI Choice into a ChatCompletionResponse.
OpenAI Choice:
message: ChatCompletionMessage
finish_reason: str
logprobs: Optional[ChoiceLogprobs]
OpenAI ChatCompletionMessage:
role: Literal["assistant"]
content: Optional[str]
tool_calls: Optional[List[ChatCompletionMessageToolCall]]
->
ChatCompletionResponse:
completion_message: CompletionMessage
logprobs: Optional[List[TokenLogProbs]]
CompletionMessage:
role: Literal["assistant"]
content: str | ImageMedia | List[str | ImageMedia]
stop_reason: StopReason
tool_calls: List[ToolCall]
class StopReason(Enum):
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
assert (
hasattr(choice, "message") and choice.message
), "error in server response: message not found"
assert (
hasattr(choice, "finish_reason") and choice.finish_reason
), "error in server response: finish_reason not found"
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content
or "", # CompletionMessage content is not optional
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
tool_calls=_convert_openai_tool_calls(choice.message.tool_calls),
),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
async def convert_openai_chat_completion_stream(
stream: AsyncStream[OpenAIChatCompletionChunk],
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
"""
Convert a stream of OpenAI chat completion chunks into a stream
of ChatCompletionResponseStreamChunk.
OpenAI ChatCompletionChunk:
choices: List[Choice]
OpenAI Choice: # different from the non-streamed Choice
delta: ChoiceDelta
finish_reason: Optional[Literal["stop", "length", "tool_calls", "content_filter", "function_call"]]
logprobs: Optional[ChoiceLogprobs]
OpenAI ChoiceDelta:
content: Optional[str]
role: Optional[Literal["system", "user", "assistant", "tool"]]
tool_calls: Optional[List[ChoiceDeltaToolCall]]
OpenAI ChoiceDeltaToolCall:
index: int
id: Optional[str]
function: Optional[ChoiceDeltaToolCallFunction]
type: Optional[Literal["function"]]
OpenAI ChoiceDeltaToolCallFunction:
name: Optional[str]
arguments: Optional[str]
->
ChatCompletionResponseStreamChunk:
event: ChatCompletionResponseEvent
ChatCompletionResponseEvent:
event_type: ChatCompletionResponseEventType
delta: Union[str, ToolCallDelta]
logprobs: Optional[List[TokenLogProbs]]
stop_reason: Optional[StopReason]
ChatCompletionResponseEventType:
start = "start"
progress = "progress"
complete = "complete"
ToolCallDelta:
content: Union[str, ToolCall]
parse_status: ToolCallParseStatus
ToolCall:
call_id: str
tool_name: str
arguments: str
ToolCallParseStatus:
started = "started"
in_progress = "in_progress"
failure = "failure"
success = "success"
TokenLogProbs:
logprobs_by_token: Dict[str, float]
- token, logprob
StopReason:
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
# generate a stream of ChatCompletionResponseEventType: start -> progress -> progress -> ...
def _event_type_generator() -> (
Generator[ChatCompletionResponseEventType, None, None]
):
yield ChatCompletionResponseEventType.start
while True:
yield ChatCompletionResponseEventType.progress
event_type = _event_type_generator()
# we implement NIM specific semantics, the main difference from OpenAI
# is that tool_calls are always produced as a complete call. there is no
# intermediate / partial tool call streamed. because of this, we can
# simplify the logic and not concern outselves with parse_status of
# started/in_progress/failed. we can always assume success.
#
# a stream of ChatCompletionResponseStreamChunk consists of
# 0. a start event
# 1. zero or more progress events
# - each progress event has a delta
# - each progress event may have a stop_reason
# - each progress event may have logprobs
# - each progress event may have tool_calls
# if a progress event has tool_calls,
# it is fully formed and
# can be emitted with a parse_status of success
# 2. a complete event
stop_reason = None
async for chunk in stream:
choice = chunk.choices[0] # assuming only one choice per chunk
# we assume there's only one finish_reason in the stream
stop_reason = _convert_openai_finish_reason(choice.finish_reason) or stop_reason
# if there's a tool call, emit an event for each tool in the list
# if tool call and content, emit both separately
if choice.delta.tool_calls:
# the call may have content and a tool call. ChatCompletionResponseEvent
# does not support both, so we emit the content first
if choice.delta.content:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=choice.delta.content,
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
# it is possible to have parallel tool calls in stream, but
# ChatCompletionResponseEvent only supports one per stream
if len(choice.delta.tool_calls) > 1:
warnings.warn(
"multiple tool calls found in a single delta, using the first, ignoring the rest"
)
# NIM only produces fully formed tool calls, so we can assume success
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=ToolCallDelta(
content=_convert_openai_tool_calls(choice.delta.tool_calls)[0],
parse_status=ToolCallParseStatus.success,
),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=choice.delta.content or "", # content is not optional
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)

View file

@ -4,43 +4,13 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import Any, Dict, List, Optional, Tuple
from typing import Tuple
import httpx
from llama_models.llama3.api.datatypes import (
CompletionMessage,
StopReason,
TokenLogProbs,
ToolCall,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
Message,
)
from ._config import NVIDIAConfig
def convert_message(message: Message) -> dict:
"""
Convert a Message to an OpenAI API-compatible dictionary.
"""
out_dict = message.dict()
# Llama Stack uses role="ipython" for tool call messages, OpenAI uses "tool"
if out_dict["role"] == "ipython":
out_dict.update(role="tool")
if "stop_reason" in out_dict:
out_dict.update(stop_reason=out_dict["stop_reason"].value)
# TODO(mf): tool_calls
return out_dict
async def _get_health(url: str) -> Tuple[bool, bool]:
"""
Query {url}/v1/health/{live,ready} to check if the server is running and ready
@ -78,251 +48,3 @@ async def check_health(config: NVIDIAConfig) -> None:
# TODO(mf): should we wait for the server to be ready?
except httpx.ConnectError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
def convert_chat_completion_request(
request: ChatCompletionRequest,
n: int = 1,
) -> dict:
"""
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
"""
# model -> model
# messages -> messages
# sampling_params TODO(mattf): review strategy
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
# strategy=top_k -> nvext.top_k = top_k
# temperature -> temperature
# top_p -> top_p
# top_k -> nvext.top_k
# max_tokens -> max_tokens
# repetition_penalty -> nvext.repetition_penalty
# tools -> tools
# tool_choice ("auto", "required") -> tool_choice
# tool_prompt_format -> TBD
# stream -> stream
# logprobs -> logprobs
print(f"sampling_params: {request.sampling_params}")
payload: Dict[str, Any] = dict(
model=request.model,
messages=[convert_message(message) for message in request.messages],
stream=request.stream,
nvext={},
n=n,
)
nvext = payload["nvext"]
if request.tools:
payload.update(tools=request.tools)
if request.tool_choice:
payload.update(
tool_choice=request.tool_choice.value
) # we cannot include tool_choice w/o tools, server will complain
if request.logprobs:
payload.update(logprobs=True)
payload.update(top_logprobs=request.logprobs.top_k)
if request.sampling_params:
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
if request.sampling_params.max_tokens:
payload.update(max_tokens=request.sampling_params.max_tokens)
if request.sampling_params.strategy == "top_p":
nvext.update(top_k=-1)
payload.update(top_p=request.sampling_params.top_p)
elif request.sampling_params.strategy == "top_k":
if (
request.sampling_params.top_k != -1
and request.sampling_params.top_k < 1
):
warnings.warn("top_k must be -1 or >= 1")
nvext.update(top_k=request.sampling_params.top_k)
elif request.sampling_params.strategy == "greedy":
nvext.update(top_k=-1)
payload.update(temperature=request.sampling_params.temperature)
return payload
def _parse_content(completion: dict) -> str:
"""
Get the content from an OpenAI completion response.
OpenAI completion response format -
{
...
"message": {"role": "assistant", "content": ..., ...},
...
}
"""
# content is nullable in the OpenAI response, common for tool calls
return completion["message"]["content"] or ""
def _parse_stop_reason(completion: dict) -> StopReason:
"""
Get the StopReason from an OpenAI completion response.
OpenAI completion response format -
{
...
"finish_reason": "length" or "stop" or "tool_calls",
...
}
"""
# StopReason options are end_of_turn, end_of_message, out_of_tokens
# TODO(mf): is end_of_turn and end_of_message usage correct?
stop_reason = StopReason.end_of_turn
if completion["finish_reason"] == "length":
stop_reason = StopReason.out_of_tokens
elif completion["finish_reason"] == "stop":
stop_reason = StopReason.end_of_message
elif completion["finish_reason"] == "tool_calls":
stop_reason = StopReason.end_of_turn
return stop_reason
def _parse_tool_calls(completion: dict) -> List[ToolCall]:
"""
Get the tool calls from an OpenAI completion response.
OpenAI completion response format -
{
...,
"message": {
...,
"tool_calls": [
{
"id": X,
"type": "function",
"function": {
"name": Y,
"arguments": Z,
},
}*
],
},
}
->
[
ToolCall(call_id=X, tool_name=Y, arguments=Z),
...
]
"""
tool_calls = []
if "tool_calls" in completion["message"]:
assert isinstance(
completion["message"]["tool_calls"], list
), "error in server response: tool_calls not a list"
for call in completion["message"]["tool_calls"]:
assert "id" in call, "error in server response: tool call id not found"
assert (
"function" in call
), "error in server response: tool call function not found"
assert (
"name" in call["function"]
), "error in server response: tool call function name not found"
assert (
"arguments" in call["function"]
), "error in server response: tool call function arguments not found"
tool_calls.append(
ToolCall(
call_id=call["id"],
tool_name=call["function"]["name"],
arguments=call["function"]["arguments"],
)
)
return tool_calls
def _parse_logprobs(completion: dict) -> Optional[List[TokenLogProbs]]:
"""
Extract logprobs from OpenAI as a list of TokenLogProbs.
OpenAI completion response format -
{
...
"logprobs": {
content: [
{
...,
top_logprobs: [{token: X, logprob: Y, bytes: [...]}+]
}+
]
},
...
}
->
[
TokenLogProbs(
logprobs_by_token={X: Y, ...}
),
...
]
"""
if not (logprobs := completion.get("logprobs")):
return None
return [
TokenLogProbs(
logprobs_by_token={
logprobs["token"]: logprobs["logprob"]
for logprobs in content["top_logprobs"]
}
)
for content in logprobs["content"]
]
def parse_completion(
completion: dict,
) -> ChatCompletionResponse:
"""
Parse an OpenAI completion response into a CompletionMessage and logprobs.
OpenAI completion response format -
{
"message": {
"role": "assistant",
"content": ...,
"tool_calls": [
{
...
"id": ...,
"function": {
"name": ...,
"arguments": ...,
},
}*
]?,
"finish_reason": ...,
"logprobs": {
"content": [
{
...,
"top_logprobs": [{"token": ..., "logprob": ..., ...}+]
}+
]
}?
}
"""
assert "message" in completion, "error in server response: message not found"
assert (
"finish_reason" in completion
), "error in server response: finish_reason not found"
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=_parse_content(completion),
stop_reason=_parse_stop_reason(completion),
tool_calls=_parse_tool_calls(completion),
),
logprobs=_parse_logprobs(completion),
)

View file

@ -144,7 +144,9 @@ def available_providers() -> List[ProviderSpec]:
api=Api.inference,
adapter=AdapterSpec(
adapter_type="nvidia",
pip_packages=[], # TODO(mf): need to specify httpx if it's already a llama-stack dep?
pip_packages=[
"openai",
],
module="llama_stack.providers.adapters.inference.nvidia",
config_class="llama_stack.providers.adapters.inference.nvidia.NVIDIAConfig",
),

View file

@ -8,11 +8,15 @@ import itertools
from typing import Generator, List, Tuple
import pytest
from llama_models.datatypes import SamplingParams
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
Inference,
# LogProbConfig,
Message,
StopReason,
SystemMessage,
@ -96,6 +100,70 @@ async def test_chat_completion_messages(
assert response.completion_message.tool_calls == []
async def test_chat_completion_basic(
client: Inference,
model: str,
):
"""
Test the chat completion endpoint with basic messages, with and without streaming.
"""
client = await client
messages = [
UserMessage(content="How are you?"),
]
response = await client.chat_completion(
model=model,
messages=messages,
stream=False,
)
assert isinstance(response, ChatCompletionResponse)
assert isinstance(response.completion_message.content, str)
# we're not testing accuracy, so no assertions on the result.completion_message.content
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.stop_reason, StopReason)
assert response.completion_message.tool_calls == []
async def test_chat_completion_stream_basic(
client: Inference,
model: str,
):
"""
Test the chat completion endpoint with basic messages, with and without streaming.
"""
client = await client
messages = [
UserMessage(content="How are you?"),
]
response = await client.chat_completion(
model=model,
messages=messages,
stream=True,
sampling_params=SamplingParams(max_tokens=5),
# logprobs=LogProbConfig(top_k=3),
)
chunks = [chunk async for chunk in response]
assert all(isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in chunks)
assert all(isinstance(chunk.event.delta, str) for chunk in chunks)
assert chunks[0].event.event_type == ChatCompletionResponseEventType.start
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
if len(chunks) > 2:
assert all(
chunk.event.event_type == ChatCompletionResponseEventType.progress
for chunk in chunks[1:-1]
)
# we're not testing accuracy, so no assertions on the result.completion_message.content
assert all(
chunk.event.stop_reason is None
or isinstance(chunk.event.stop_reason, StopReason)
for chunk in chunks
)
async def test_bad_base_url(
model: str,
):

View file

@ -157,7 +157,7 @@ async def test_tools(
"type": "function",
"function": {
"name": "magic",
"arguments": {"input": 3},
"arguments": '{"input": 3}',
},
},
{
@ -165,7 +165,7 @@ async def test_tools(
"type": "function",
"function": {
"name": "magic!",
"arguments": {"input": 42},
"arguments": '{"input": 42}',
},
},
],

View file

@ -0,0 +1,493 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List
import pytest
from llama_models.llama3.api.datatypes import StopReason
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
)
from llama_stack.providers.adapters.inference.nvidia._openai_utils import (
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
)
from openai.types.chat import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
ChatCompletionMessage,
ChatCompletionMessageToolCall,
ChatCompletionTokenLogprob,
)
from openai.types.chat.chat_completion import Choice, ChoiceLogprobs
from openai.types.chat.chat_completion_chunk import (
Choice as ChoiceChunk,
ChoiceDelta,
ChoiceDeltaToolCall,
ChoiceDeltaToolCallFunction,
)
from openai.types.chat.chat_completion_token_logprob import TopLogprob
def test_convert_openai_chat_completion_choice_basic():
response = Choice(
index=0,
message=ChatCompletionMessage(
role="assistant",
content="Hello, world!",
),
finish_reason="stop",
)
result = convert_openai_chat_completion_choice(response)
assert isinstance(result, ChatCompletionResponse)
assert result.completion_message.content == "Hello, world!"
assert result.completion_message.stop_reason == StopReason.end_of_turn
assert result.completion_message.tool_calls == []
assert result.logprobs is None
def test_convert_openai_chat_completion_choice_basic_with_tool_calls():
response = Choice(
index=0,
message=ChatCompletionMessage(
role="assistant",
content="Hello, world!",
tool_calls=[
ChatCompletionMessageToolCall(
id="tool_call_id",
type="function",
function={
"name": "test_function",
"arguments": '{"test_args": "test_value"}',
},
)
],
),
finish_reason="tool_calls",
)
result = convert_openai_chat_completion_choice(response)
assert isinstance(result, ChatCompletionResponse)
assert result.completion_message.content == "Hello, world!"
assert result.completion_message.stop_reason == StopReason.end_of_message
assert len(result.completion_message.tool_calls) == 1
assert result.completion_message.tool_calls[0].tool_name == "test_function"
assert result.completion_message.tool_calls[0].arguments == {
"test_args": "test_value"
}
assert result.logprobs is None
def test_convert_openai_chat_completion_choice_basic_with_logprobs():
response = Choice(
index=0,
message=ChatCompletionMessage(
role="assistant",
content="Hello world",
),
finish_reason="stop",
logprobs=ChoiceLogprobs(
content=[
ChatCompletionTokenLogprob(
token="Hello",
logprob=-1.0,
bytes=[72, 101, 108, 108, 111],
top_logprobs=[
TopLogprob(
token="Hello", logprob=-1.0, bytes=[72, 101, 108, 108, 111]
),
TopLogprob(
token="Greetings",
logprob=-1.5,
bytes=[71, 114, 101, 101, 116, 105, 110, 103, 115],
),
],
),
ChatCompletionTokenLogprob(
token="world",
logprob=-1.5,
bytes=[119, 111, 114, 108, 100],
top_logprobs=[
TopLogprob(
token="world", logprob=-1.5, bytes=[119, 111, 114, 108, 100]
),
TopLogprob(
token="planet",
logprob=-2.0,
bytes=[112, 108, 97, 110, 101, 116],
),
],
),
]
),
)
result = convert_openai_chat_completion_choice(response)
assert isinstance(result, ChatCompletionResponse)
assert result.completion_message.content == "Hello world"
assert result.completion_message.stop_reason == StopReason.end_of_turn
assert result.completion_message.tool_calls == []
assert result.logprobs is not None
assert len(result.logprobs) == 2
assert len(result.logprobs[0].logprobs_by_token) == 2
assert result.logprobs[0].logprobs_by_token["Hello"] == -1.0
assert result.logprobs[0].logprobs_by_token["Greetings"] == -1.5
assert len(result.logprobs[1].logprobs_by_token) == 2
assert result.logprobs[1].logprobs_by_token["world"] == -1.5
assert result.logprobs[1].logprobs_by_token["planet"] == -2.0
def test_convert_openai_chat_completion_choice_missing_message():
response = Choice(
index=0,
message=ChatCompletionMessage(
role="assistant",
content="Hello, world!",
),
finish_reason="stop",
)
response.message = None
with pytest.raises(
AssertionError, match="error in server response: message not found"
):
convert_openai_chat_completion_choice(response)
del response.message
with pytest.raises(
AssertionError, match="error in server response: message not found"
):
convert_openai_chat_completion_choice(response)
def test_convert_openai_chat_completion_choice_missing_finish_reason():
response = Choice(
index=0,
message=ChatCompletionMessage(
role="assistant",
content="Hello, world!",
),
finish_reason="stop",
)
response.finish_reason = None
with pytest.raises(
AssertionError, match="error in server response: finish_reason not found"
):
convert_openai_chat_completion_choice(response)
del response.finish_reason
with pytest.raises(
AssertionError, match="error in server response: finish_reason not found"
):
convert_openai_chat_completion_choice(response)
# we want to test convert_openai_chat_completion_stream
# we need to produce a stream of OpenAIChatCompletionChunk
# streams to produce -
# 0. basic stream with one chunk, should produce 3 (start, progress, complete)
# 1. stream with 3 chunks, should produce 5 events (start, progress, progress, progress, complete)
# 2. stream with a tool call, should produce 4 events (start, progress w/ tool_call, complete)
@pytest.mark.asyncio
async def test_convert_openai_chat_completion_stream_basic():
chunks = [
OpenAIChatCompletionChunk(
id="1",
created=1234567890,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
content="Hello, world!",
),
finish_reason="stop",
)
],
)
]
async def async_generator_from_list(items: List) -> AsyncGenerator:
for item in items:
yield item
results = [
result
async for result in convert_openai_chat_completion_stream(
async_generator_from_list(chunks)
)
]
assert len(results) == 2
assert all(
isinstance(result, ChatCompletionResponseStreamChunk) for result in results
)
assert results[0].event.event_type == ChatCompletionResponseEventType.start
assert results[0].event.delta == "Hello, world!"
assert results[1].event.event_type == ChatCompletionResponseEventType.complete
assert results[1].event.stop_reason == StopReason.end_of_turn
@pytest.mark.asyncio
async def test_convert_openai_chat_completion_stream_basic_empty():
chunks = [
OpenAIChatCompletionChunk(
id="1",
created=1234567890,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
),
finish_reason="stop",
)
],
),
OpenAIChatCompletionChunk(
id="1",
created=1234567890,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
content="Hello, world!",
),
finish_reason="stop",
)
],
),
]
async def async_generator_from_list(items: List) -> AsyncGenerator:
for item in items:
yield item
results = [
result
async for result in convert_openai_chat_completion_stream(
async_generator_from_list(chunks)
)
]
print(results)
assert len(results) == 3
assert all(
isinstance(result, ChatCompletionResponseStreamChunk) for result in results
)
assert results[0].event.event_type == ChatCompletionResponseEventType.start
assert results[1].event.event_type == ChatCompletionResponseEventType.progress
assert results[1].event.delta == "Hello, world!"
assert results[2].event.event_type == ChatCompletionResponseEventType.complete
assert results[2].event.stop_reason == StopReason.end_of_turn
@pytest.mark.asyncio
async def test_convert_openai_chat_completion_stream_multiple_chunks():
chunks = [
OpenAIChatCompletionChunk(
id="1",
created=1234567890,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
content="Hello, world!",
),
# finish_reason="continue",
)
],
),
OpenAIChatCompletionChunk(
id="2",
created=1234567891,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
content="How are you?",
),
# finish_reason="continue",
)
],
),
OpenAIChatCompletionChunk(
id="3",
created=1234567892,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
content="I'm good, thanks!",
),
finish_reason="stop",
)
],
),
]
async def async_generator_from_list(items: List) -> AsyncGenerator:
for item in items:
yield item
results = [
result
async for result in convert_openai_chat_completion_stream(
async_generator_from_list(chunks)
)
]
assert len(results) == 4
assert all(
isinstance(result, ChatCompletionResponseStreamChunk) for result in results
)
assert results[0].event.event_type == ChatCompletionResponseEventType.start
assert results[0].event.delta == "Hello, world!"
assert not results[0].event.stop_reason
assert results[1].event.event_type == ChatCompletionResponseEventType.progress
assert results[1].event.delta == "How are you?"
assert not results[1].event.stop_reason
assert results[2].event.event_type == ChatCompletionResponseEventType.progress
assert results[2].event.delta == "I'm good, thanks!"
assert not results[2].event.stop_reason
assert results[3].event.event_type == ChatCompletionResponseEventType.complete
assert results[3].event.stop_reason == StopReason.end_of_turn
@pytest.mark.asyncio
async def test_convert_openai_chat_completion_stream_with_tool_call_and_content():
chunks = [
OpenAIChatCompletionChunk(
id="1",
created=1234567890,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
content="Hello, world!",
tool_calls=[
ChoiceDeltaToolCall(
index=0,
id="tool_call_id",
type="function",
function=ChoiceDeltaToolCallFunction(
name="test_function",
arguments='{"test_args": "test_value"}',
),
)
],
),
finish_reason="tool_calls",
)
],
)
]
async def async_generator_from_list(items: List) -> AsyncGenerator:
for item in items:
yield item
results = [
result
async for result in convert_openai_chat_completion_stream(
async_generator_from_list(chunks)
)
]
assert len(results) == 3
assert all(
isinstance(result, ChatCompletionResponseStreamChunk) for result in results
)
assert results[0].event.event_type == ChatCompletionResponseEventType.start
assert results[0].event.delta == "Hello, world!"
assert not results[0].event.stop_reason
assert results[1].event.event_type == ChatCompletionResponseEventType.progress
assert not isinstance(results[1].event.delta, str)
assert results[1].event.delta.content.tool_name == "test_function"
assert results[1].event.delta.content.arguments == {"test_args": "test_value"}
assert not results[1].event.stop_reason
assert results[2].event.event_type == ChatCompletionResponseEventType.complete
assert results[2].event.stop_reason == StopReason.end_of_message
@pytest.mark.asyncio
async def test_convert_openai_chat_completion_stream_with_tool_call_and_no_content():
chunks = [
OpenAIChatCompletionChunk(
id="1",
created=1234567890,
model="mock-model",
object="chat.completion.chunk",
choices=[
ChoiceChunk(
index=0,
delta=ChoiceDelta(
role="assistant",
tool_calls=[
ChoiceDeltaToolCall(
index=0,
id="tool_call_id",
type="function",
function=ChoiceDeltaToolCallFunction(
name="test_function",
arguments='{"test_args": "test_value"}',
),
)
],
),
finish_reason="tool_calls",
)
],
)
]
async def async_generator_from_list(items: List) -> AsyncGenerator:
for item in items:
yield item
results = [
result
async for result in convert_openai_chat_completion_stream(
async_generator_from_list(chunks)
)
]
assert len(results) == 2
assert all(
isinstance(result, ChatCompletionResponseStreamChunk) for result in results
)
assert results[0].event.event_type == ChatCompletionResponseEventType.start
assert not isinstance(results[0].event.delta, str)
assert results[0].event.delta.content.tool_name == "test_function"
assert results[0].event.delta.content.arguments == {"test_args": "test_value"}
assert not results[0].event.stop_reason
assert results[1].event.event_type == ChatCompletionResponseEventType.complete
assert results[1].event.stop_reason == StopReason.end_of_message