mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 06:09:47 +00:00
enable streaming support, use openai-python instead of httpx
This commit is contained in:
parent
2dd8c4bcb6
commit
dbe665ed19
7 changed files with 1037 additions and 341 deletions
|
|
@ -8,11 +8,15 @@ import itertools
|
|||
from typing import Generator, List, Tuple
|
||||
|
||||
import pytest
|
||||
from llama_models.datatypes import SamplingParams
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
Inference,
|
||||
# LogProbConfig,
|
||||
Message,
|
||||
StopReason,
|
||||
SystemMessage,
|
||||
|
|
@ -96,6 +100,70 @@ async def test_chat_completion_messages(
|
|||
assert response.completion_message.tool_calls == []
|
||||
|
||||
|
||||
async def test_chat_completion_basic(
|
||||
client: Inference,
|
||||
model: str,
|
||||
):
|
||||
"""
|
||||
Test the chat completion endpoint with basic messages, with and without streaming.
|
||||
"""
|
||||
client = await client
|
||||
messages = [
|
||||
UserMessage(content="How are you?"),
|
||||
]
|
||||
|
||||
response = await client.chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert isinstance(response, ChatCompletionResponse)
|
||||
assert isinstance(response.completion_message.content, str)
|
||||
# we're not testing accuracy, so no assertions on the result.completion_message.content
|
||||
assert response.completion_message.role == "assistant"
|
||||
assert isinstance(response.completion_message.stop_reason, StopReason)
|
||||
assert response.completion_message.tool_calls == []
|
||||
|
||||
|
||||
async def test_chat_completion_stream_basic(
|
||||
client: Inference,
|
||||
model: str,
|
||||
):
|
||||
"""
|
||||
Test the chat completion endpoint with basic messages, with and without streaming.
|
||||
"""
|
||||
client = await client
|
||||
messages = [
|
||||
UserMessage(content="How are you?"),
|
||||
]
|
||||
|
||||
response = await client.chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
stream=True,
|
||||
sampling_params=SamplingParams(max_tokens=5),
|
||||
# logprobs=LogProbConfig(top_k=3),
|
||||
)
|
||||
|
||||
chunks = [chunk async for chunk in response]
|
||||
assert all(isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in chunks)
|
||||
assert all(isinstance(chunk.event.delta, str) for chunk in chunks)
|
||||
assert chunks[0].event.event_type == ChatCompletionResponseEventType.start
|
||||
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||
if len(chunks) > 2:
|
||||
assert all(
|
||||
chunk.event.event_type == ChatCompletionResponseEventType.progress
|
||||
for chunk in chunks[1:-1]
|
||||
)
|
||||
# we're not testing accuracy, so no assertions on the result.completion_message.content
|
||||
assert all(
|
||||
chunk.event.stop_reason is None
|
||||
or isinstance(chunk.event.stop_reason, StopReason)
|
||||
for chunk in chunks
|
||||
)
|
||||
|
||||
|
||||
async def test_bad_base_url(
|
||||
model: str,
|
||||
):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue