Add centml as remote inference provider

This commit is contained in:
Honglin Cao 2025-01-08 11:15:29 -05:00 committed by Honglin Cao
parent ead9397e22
commit dc1ff40413
10 changed files with 798 additions and 25 deletions

View file

@ -0,0 +1,31 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from .config import CentMLImplConfig
class CentMLProviderDataValidator(BaseModel):
centml_api_key: str
async def get_adapter_impl(config: CentMLImplConfig, _deps):
"""
Factory function to construct and initialize the CentML adapter.
:param config: Instance of CentMLImplConfig, containing `url`, `api_key`, etc.
:param _deps: Additional dependencies provided by llama-stack (unused here).
"""
from .centml import CentMLInferenceAdapter
# Ensure the provided config is indeed a CentMLImplConfig
assert isinstance(
config, CentMLImplConfig
), f"Unexpected config type: {type(config)}"
# Instantiate and initialize the adapter
adapter = CentMLInferenceAdapter(config)
await adapter.initialize()
return adapter

View file

@ -0,0 +1,308 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional, Union
from openai import OpenAI
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
ResponseFormatType,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import CentMLImplConfig
# Example model aliases that map from CentMLs
# published model identifiers to llama-stack's `CoreModelId`.
MODEL_ALIASES = [
build_model_alias(
"meta-llama/Llama-3.3-70B-Instruct",
CoreModelId.llama3_3_70b_instruct.value,
),
build_model_alias(
"meta-llama/Llama-3.1-405B-Instruct-FP8",
CoreModelId.llama3_1_405b_instruct.value,
),
]
class CentMLInferenceAdapter(ModelRegistryHelper, Inference,
NeedsRequestProviderData):
"""
Adapter to use CentML's serverless inference endpoints,
which adhere to the OpenAI chat/completions API spec,
inside llama-stack.
"""
def __init__(self, config: CentMLImplConfig) -> None:
super().__init__(MODEL_ALIASES)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
def _get_api_key(self) -> str:
"""
Obtain the CentML API key either from the adapter config
or from the dynamic provider data in request headers.
"""
if self.config.api_key is not None:
return self.config.api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.centml_api_key:
raise ValueError(
'Pass CentML API Key in the header X-LlamaStack-ProviderData as { "centml_api_key": "<your-api-key>" }'
)
return provider_data.centml_api_key
def _get_client(self) -> OpenAI:
"""
Creates an OpenAI-compatible client pointing to CentML's base URL,
using the user's CentML API key.
"""
api_key = self._get_api_key()
return OpenAI(api_key=api_key, base_url=self.config.url)
#
# COMPLETION (non-chat)
#
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
"""
For "completion" style requests (non-chat).
"""
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def _nonstream_completion(
self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
# Using the older "completions" route for non-chat
response = self._get_client().completions.create(**params)
return process_completion_response(response, self.formatter)
async def _stream_completion(self,
request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _to_async_generator():
stream = self._get_client().completions.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_completion_stream_response(
stream, self.formatter):
yield chunk
#
# CHAT COMPLETION
#
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
"""
For "chat completion" style requests.
"""
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
# For chat requests, if "messages" is in params -> .chat.completions
if "messages" in params:
response = self._get_client().chat.completions.create(**params)
else:
# fallback if we ended up only with "prompt"
response = self._get_client().completions.create(**params)
return process_chat_completion_response(response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _to_async_generator():
if "messages" in params:
stream = self._get_client().chat.completions.create(**params)
else:
stream = self._get_client().completions.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
stream, self.formatter):
yield chunk
#
# HELPER METHODS
#
async def _get_params(
self, request: Union[ChatCompletionRequest,
CompletionRequest]) -> dict:
"""
Build the 'params' dict that the OpenAI (CentML) client expects.
For chat requests, we always prefer "messages" so that it calls
the chat endpoint properly.
"""
input_dict = {}
media_present = request_has_media(request)
if isinstance(request, ChatCompletionRequest):
# For chat requests, always build "messages" from the user messages
input_dict["messages"] = [
await convert_message_to_openai_dict(m)
for m in request.messages
]
else:
# Non-chat (CompletionRequest)
assert not media_present, "CentML does not support media for completions"
input_dict["prompt"] = await completion_request_to_prompt(
request, self.formatter)
return {
"model":
request.model,
**input_dict,
"stream":
request.stream,
**self._build_options(request.sampling_params, request.response_format),
}
def _build_options(
self,
sampling_params: Optional[SamplingParams],
fmt: Optional[ResponseFormat],
) -> dict:
"""
Build temperature, max_tokens, top_p, etc., plus any response format data.
"""
options = get_sampling_options(sampling_params)
options.setdefault("max_tokens", 512)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
raise NotImplementedError(
"Grammar response format not supported yet")
else:
raise ValueError(f"Unknown response format {fmt.type}")
return options
#
# EMBEDDINGS
#
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
# CentML does not support media
assert all(not content_has_media(c) for c in contents), \
"CentML does not support media for embeddings"
resp = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(c) for c in contents],
)
embeddings = [item.embedding for item in resp.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field, SecretStr
@json_schema_type
class CentMLImplConfig(BaseModel):
url: str = Field(
default="https://api.centml.com/openai/v1",
description="The CentML API server URL",
)
api_key: Optional[SecretStr] = Field(
default=None,
description="The CentML API Key",
)
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"url": "https://api.centml.com/openai/v1",
"api_key": "${env.CENTML_API_KEY}",
}