Add centml as remote inference provider

This commit is contained in:
Honglin Cao 2025-01-08 11:15:29 -05:00 committed by Honglin Cao
parent ead9397e22
commit dc1ff40413
10 changed files with 798 additions and 25 deletions

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .centml import get_distribution_template # noqa: F401

View file

@ -0,0 +1,32 @@
version: '2'
name: centml
distribution_spec:
description: Use CentML for running LLM inference
providers:
inference:
- remote::centml
memory:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::code-interpreter
- inline::memory-runtime
image_type: conda

View file

@ -0,0 +1,110 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_models.sku_list import all_registered_models
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.centml.config import CentMLImplConfig
# If your CentML adapter has a MODEL_ALIASES constant with known model mappings:
from llama_stack.providers.remote.inference.centml.centml import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
"""
Returns a distribution template for running Llama Stack with CentML inference.
"""
providers = {
"inference": ["remote::centml"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
}
name = "centml"
# Primary inference provider: CentML
inference_provider = Provider(
provider_id="centml",
provider_type="remote::centml",
config=CentMLImplConfig.sample_run_config(),
)
# Memory provider: Faiss
memory_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
)
# Embedding provider: SentenceTransformers
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
# Map Llama Models to provider IDs if needed
core_model_to_hf_repo = {
m.descriptor(): m.huggingface_repo for m in all_registered_models()
}
default_models = [
ModelInput(
model_id=core_model_to_hf_repo[m.llama_model],
provider_model_id=m.provider_model_id,
provider_id="centml",
)
for m in MODEL_ALIASES
]
# Example embedding model
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={"embedding_dimension": 384},
)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use CentML for running LLM inference",
docker_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=default_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
},
default_models=default_models + [embedding_model],
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"CENTML_API_KEY": (
"",
"CentML API Key",
),
},
)

View file

@ -0,0 +1,66 @@
---
orphan: true
---
# CentML Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }}`
{% endfor %}
{% endif %}
### Prerequisite: API Keys
Make sure you have a valid **CentML API Key**. Sign up or access your credentials at [CentML.com](https://centml.com/).
## Running Llama Stack with CentML
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env CENTML_API_KEY=$CENTML_API_KEY
```
### Via Conda
```bash
llama stack build --template {{ name }} --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env CENTML_API_KEY=$CENTML_API_KEY
```

View file

@ -0,0 +1,129 @@
version: '2'
image_name: centml
conda_env: centml
apis:
- agents
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
providers:
inference:
- provider_id: centml
provider_type: remote::centml
config:
url: https://api.centml.com/openai/v1
api_key: "${env.CENTML_API_KEY}"
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/centml}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/centml}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/centml}/trace_store.db
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config: {}
- provider_id: localfs
provider_type: inline::localfs
config: {}
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:}
max_results: 3
- provider_id: code-interpreter
provider_type: inline::code-interpreter
config: {}
- provider_id: memory-runtime
provider_type: inline::memory-runtime
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/centml}/registry.db
models:
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: centml
provider_model_id: meta-llama/Llama-3.3-70B-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
provider_id: centml
provider_model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
model_type: llm
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
memory_banks: []
datasets: []
scoring_fns: []
eval_tasks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::memory
provider_id: memory-runtime
- toolgroup_id: builtin::code_interpreter
provider_id: code-interpreter