mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-11 20:40:40 +00:00
Add centml as remote inference provider
This commit is contained in:
parent
ead9397e22
commit
dc1ff40413
10 changed files with 798 additions and 25 deletions
|
@ -587,6 +587,38 @@
|
|||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"centml": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
|
|
|
@ -34,20 +34,19 @@ def available_providers() -> List[ProviderSpec]:
|
|||
provider_type="inline::meta-reference",
|
||||
pip_packages=META_REFERENCE_DEPS,
|
||||
module="llama_stack.providers.inline.inference.meta_reference",
|
||||
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::meta-reference-quantized",
|
||||
pip_packages=(
|
||||
META_REFERENCE_DEPS
|
||||
+ [
|
||||
pip_packages=(META_REFERENCE_DEPS + [
|
||||
"fbgemm-gpu",
|
||||
"torchao==0.5.0",
|
||||
]
|
||||
),
|
||||
]),
|
||||
module="llama_stack.providers.inline.inference.meta_reference",
|
||||
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceQuantizedInferenceConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.inline.inference.meta_reference.MetaReferenceQuantizedInferenceConfig",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
|
@ -56,7 +55,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"vllm",
|
||||
],
|
||||
module="llama_stack.providers.inline.inference.vllm",
|
||||
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.inline.inference.vllm.VLLMConfig",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
|
@ -74,7 +74,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="sample",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.sample",
|
||||
config_class="llama_stack.providers.remote.inference.sample.SampleConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.sample.SampleConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -85,7 +86,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"cerebras_cloud_sdk",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.cerebras",
|
||||
config_class="llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -93,7 +95,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter=AdapterSpec(
|
||||
adapter_type="ollama",
|
||||
pip_packages=["ollama", "aiohttp"],
|
||||
config_class="llama_stack.providers.remote.inference.ollama.OllamaImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.ollama.OllamaImplConfig",
|
||||
module="llama_stack.providers.remote.inference.ollama",
|
||||
),
|
||||
),
|
||||
|
@ -103,7 +106,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="vllm",
|
||||
pip_packages=["openai"],
|
||||
module="llama_stack.providers.remote.inference.vllm",
|
||||
config_class="llama_stack.providers.remote.inference.vllm.VLLMInferenceAdapterConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.vllm.VLLMInferenceAdapterConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -112,7 +116,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="tgi",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.TGIImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.tgi.TGIImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -121,7 +126,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="hf::serverless",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.InferenceAPIImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.tgi.InferenceAPIImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -130,7 +136,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="hf::endpoint",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.InferenceEndpointImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.tgi.InferenceEndpointImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -141,8 +148,10 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"fireworks-ai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.fireworks",
|
||||
config_class="llama_stack.providers.remote.inference.fireworks.FireworksImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.fireworks.FireworksProviderDataValidator",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.fireworks.FireworksImplConfig",
|
||||
provider_data_validator=
|
||||
"llama_stack.providers.remote.inference.fireworks.FireworksProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -153,8 +162,10 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"together",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.together",
|
||||
config_class="llama_stack.providers.remote.inference.together.TogetherImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.together.TogetherImplConfig",
|
||||
provider_data_validator=
|
||||
"llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -163,7 +174,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="bedrock",
|
||||
pip_packages=["boto3"],
|
||||
module="llama_stack.providers.remote.inference.bedrock",
|
||||
config_class="llama_stack.providers.remote.inference.bedrock.BedrockConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.bedrock.BedrockConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -174,7 +186,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.databricks",
|
||||
config_class="llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -185,7 +198,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.nvidia",
|
||||
config_class="llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
@ -245,7 +259,22 @@ def available_providers() -> List[ProviderSpec]:
|
|||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.sambanova",
|
||||
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="centml",
|
||||
pip_packages=[
|
||||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.centml",
|
||||
config_class=
|
||||
"llama_stack.providers.remote.inference.centml.CentMLImplConfig",
|
||||
provider_data_validator=
|
||||
"llama_stack.providers.remote.inference.centml.CentMLProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
|
|
31
llama_stack/providers/remote/inference/centml/__init__.py
Normal file
31
llama_stack/providers/remote/inference/centml/__init__.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import CentMLImplConfig
|
||||
|
||||
class CentMLProviderDataValidator(BaseModel):
|
||||
centml_api_key: str
|
||||
|
||||
async def get_adapter_impl(config: CentMLImplConfig, _deps):
|
||||
"""
|
||||
Factory function to construct and initialize the CentML adapter.
|
||||
|
||||
:param config: Instance of CentMLImplConfig, containing `url`, `api_key`, etc.
|
||||
:param _deps: Additional dependencies provided by llama-stack (unused here).
|
||||
"""
|
||||
from .centml import CentMLInferenceAdapter
|
||||
|
||||
# Ensure the provided config is indeed a CentMLImplConfig
|
||||
assert isinstance(
|
||||
config, CentMLImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
|
||||
# Instantiate and initialize the adapter
|
||||
adapter = CentMLInferenceAdapter(config)
|
||||
await adapter.initialize()
|
||||
return adapter
|
308
llama_stack/providers/remote/inference/centml/centml.py
Normal file
308
llama_stack/providers/remote/inference/centml/centml.py
Normal file
|
@ -0,0 +1,308 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import CentMLImplConfig
|
||||
|
||||
# Example model aliases that map from CentML’s
|
||||
# published model identifiers to llama-stack's `CoreModelId`.
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"meta-llama/Llama-3.3-70B-Instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta-llama/Llama-3.1-405B-Instruct-FP8",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class CentMLInferenceAdapter(ModelRegistryHelper, Inference,
|
||||
NeedsRequestProviderData):
|
||||
"""
|
||||
Adapter to use CentML's serverless inference endpoints,
|
||||
which adhere to the OpenAI chat/completions API spec,
|
||||
inside llama-stack.
|
||||
"""
|
||||
|
||||
def __init__(self, config: CentMLImplConfig) -> None:
|
||||
super().__init__(MODEL_ALIASES)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
"""
|
||||
Obtain the CentML API key either from the adapter config
|
||||
or from the dynamic provider data in request headers.
|
||||
"""
|
||||
if self.config.api_key is not None:
|
||||
return self.config.api_key.get_secret_value()
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.centml_api_key:
|
||||
raise ValueError(
|
||||
'Pass CentML API Key in the header X-LlamaStack-ProviderData as { "centml_api_key": "<your-api-key>" }'
|
||||
)
|
||||
return provider_data.centml_api_key
|
||||
|
||||
def _get_client(self) -> OpenAI:
|
||||
"""
|
||||
Creates an OpenAI-compatible client pointing to CentML's base URL,
|
||||
using the user's CentML API key.
|
||||
"""
|
||||
api_key = self._get_api_key()
|
||||
return OpenAI(api_key=api_key, base_url=self.config.url)
|
||||
|
||||
#
|
||||
# COMPLETION (non-chat)
|
||||
#
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
"""
|
||||
For "completion" style requests (non-chat).
|
||||
"""
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
# Using the older "completions" route for non-chat
|
||||
response = self._get_client().completions.create(**params)
|
||||
return process_completion_response(response, self.formatter)
|
||||
|
||||
async def _stream_completion(self,
|
||||
request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _to_async_generator():
|
||||
stream = self._get_client().completions.create(**params)
|
||||
for chunk in stream:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_completion_stream_response(
|
||||
stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
#
|
||||
# CHAT COMPLETION
|
||||
#
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
"""
|
||||
For "chat completion" style requests.
|
||||
"""
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
||||
# For chat requests, if "messages" is in params -> .chat.completions
|
||||
if "messages" in params:
|
||||
response = self._get_client().chat.completions.create(**params)
|
||||
else:
|
||||
# fallback if we ended up only with "prompt"
|
||||
response = self._get_client().completions.create(**params)
|
||||
|
||||
return process_chat_completion_response(response, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _to_async_generator():
|
||||
if "messages" in params:
|
||||
stream = self._get_client().chat.completions.create(**params)
|
||||
else:
|
||||
stream = self._get_client().completions.create(**params)
|
||||
for chunk in stream:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
#
|
||||
# HELPER METHODS
|
||||
#
|
||||
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest,
|
||||
CompletionRequest]) -> dict:
|
||||
"""
|
||||
Build the 'params' dict that the OpenAI (CentML) client expects.
|
||||
For chat requests, we always prefer "messages" so that it calls
|
||||
the chat endpoint properly.
|
||||
"""
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
# For chat requests, always build "messages" from the user messages
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_openai_dict(m)
|
||||
for m in request.messages
|
||||
]
|
||||
|
||||
else:
|
||||
# Non-chat (CompletionRequest)
|
||||
assert not media_present, "CentML does not support media for completions"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(
|
||||
request, self.formatter)
|
||||
|
||||
return {
|
||||
"model":
|
||||
request.model,
|
||||
**input_dict,
|
||||
"stream":
|
||||
request.stream,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
}
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: Optional[SamplingParams],
|
||||
fmt: Optional[ResponseFormat],
|
||||
) -> dict:
|
||||
"""
|
||||
Build temperature, max_tokens, top_p, etc., plus any response format data.
|
||||
"""
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise NotImplementedError(
|
||||
"Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return options
|
||||
|
||||
#
|
||||
# EMBEDDINGS
|
||||
#
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
# CentML does not support media
|
||||
assert all(not content_has_media(c) for c in contents), \
|
||||
"CentML does not support media for embeddings"
|
||||
|
||||
resp = self._get_client().embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(c) for c in contents],
|
||||
)
|
||||
embeddings = [item.embedding for item in resp.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
29
llama_stack/providers/remote/inference/centml/config.py
Normal file
29
llama_stack/providers/remote/inference/centml/config.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CentMLImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.centml.com/openai/v1",
|
||||
description="The CentML API server URL",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
default=None,
|
||||
description="The CentML API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.centml.com/openai/v1",
|
||||
"api_key": "${env.CENTML_API_KEY}",
|
||||
}
|
7
llama_stack/templates/centml/__init__.py
Normal file
7
llama_stack/templates/centml/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .centml import get_distribution_template # noqa: F401
|
32
llama_stack/templates/centml/build.yaml
Normal file
32
llama_stack/templates/centml/build.yaml
Normal file
|
@ -0,0 +1,32 @@
|
|||
version: '2'
|
||||
name: centml
|
||||
distribution_spec:
|
||||
description: Use CentML for running LLM inference
|
||||
providers:
|
||||
inference:
|
||||
- remote::centml
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
- inline::code-interpreter
|
||||
- inline::memory-runtime
|
||||
image_type: conda
|
110
llama_stack/templates/centml/centml.py
Normal file
110
llama_stack/templates/centml/centml.py
Normal file
|
@ -0,0 +1,110 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_models.sku_list import all_registered_models
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
|
||||
from llama_stack.providers.remote.inference.centml.config import CentMLImplConfig
|
||||
|
||||
# If your CentML adapter has a MODEL_ALIASES constant with known model mappings:
|
||||
from llama_stack.providers.remote.inference.centml.centml import MODEL_ALIASES
|
||||
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
"""
|
||||
Returns a distribution template for running Llama Stack with CentML inference.
|
||||
"""
|
||||
providers = {
|
||||
"inference": ["remote::centml"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
}
|
||||
name = "centml"
|
||||
|
||||
# Primary inference provider: CentML
|
||||
inference_provider = Provider(
|
||||
provider_id="centml",
|
||||
provider_type="remote::centml",
|
||||
config=CentMLImplConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
# Memory provider: Faiss
|
||||
memory_provider = Provider(
|
||||
provider_id="faiss",
|
||||
provider_type="inline::faiss",
|
||||
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
|
||||
)
|
||||
|
||||
# Embedding provider: SentenceTransformers
|
||||
embedding_provider = Provider(
|
||||
provider_id="sentence-transformers",
|
||||
provider_type="inline::sentence-transformers",
|
||||
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
# Map Llama Models to provider IDs if needed
|
||||
core_model_to_hf_repo = {
|
||||
m.descriptor(): m.huggingface_repo for m in all_registered_models()
|
||||
}
|
||||
default_models = [
|
||||
ModelInput(
|
||||
model_id=core_model_to_hf_repo[m.llama_model],
|
||||
provider_model_id=m.provider_model_id,
|
||||
provider_id="centml",
|
||||
)
|
||||
for m in MODEL_ALIASES
|
||||
]
|
||||
|
||||
# Example embedding model
|
||||
embedding_model = ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
provider_id="sentence-transformers",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 384},
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="self_hosted",
|
||||
description="Use CentML for running LLM inference",
|
||||
docker_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=default_models,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider, embedding_provider],
|
||||
"memory": [memory_provider],
|
||||
},
|
||||
default_models=default_models + [embedding_model],
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"CENTML_API_KEY": (
|
||||
"",
|
||||
"CentML API Key",
|
||||
),
|
||||
},
|
||||
)
|
66
llama_stack/templates/centml/doc_template.md
Normal file
66
llama_stack/templates/centml/doc_template.md
Normal file
|
@ -0,0 +1,66 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# CentML Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{% if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have a valid **CentML API Key**. Sign up or access your credentials at [CentML.com](https://centml.com/).
|
||||
|
||||
## Running Llama Stack with CentML
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env CENTML_API_KEY=$CENTML_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env CENTML_API_KEY=$CENTML_API_KEY
|
||||
```
|
129
llama_stack/templates/centml/run.yaml
Normal file
129
llama_stack/templates/centml/run.yaml
Normal file
|
@ -0,0 +1,129 @@
|
|||
version: '2'
|
||||
image_name: centml
|
||||
conda_env: centml
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: centml
|
||||
provider_type: remote::centml
|
||||
config:
|
||||
url: https://api.centml.com/openai/v1
|
||||
api_key: "${env.CENTML_API_KEY}"
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/centml}/faiss_store.db
|
||||
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/centml}/agents_store.db
|
||||
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/centml}/trace_store.db
|
||||
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config: {}
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config: {}
|
||||
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: memory-runtime
|
||||
provider_type: inline::memory-runtime
|
||||
config: {}
|
||||
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/centml}/registry.db
|
||||
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: centml
|
||||
provider_model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
model_type: llm
|
||||
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
provider_id: centml
|
||||
provider_model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
model_type: llm
|
||||
|
||||
shields:
|
||||
- shield_id: meta-llama/Llama-Guard-3-8B
|
||||
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::memory
|
||||
provider_id: memory-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
Loading…
Add table
Add a link
Reference in a new issue