mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
init commit
This commit is contained in:
parent
e5993c565e
commit
dc3d9d7720
3 changed files with 68 additions and 10 deletions
|
@ -5,7 +5,6 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from llama_models.schema_utils import json_schema_type
|
from llama_models.schema_utils import json_schema_type
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
@ -26,4 +25,4 @@ class Checkpoint(BaseModel):
|
||||||
epoch: int
|
epoch: int
|
||||||
post_training_job_id: str
|
post_training_job_id: str
|
||||||
path: str
|
path: str
|
||||||
training_metrics: Optional[PostTrainingMetric] = None
|
training_metric: PostTrainingMetric
|
||||||
|
|
|
@ -180,11 +180,18 @@ class LoraFinetuningSingleDevice:
|
||||||
self._model.set_num_output_chunks(self._loss_fn.num_output_chunks)
|
self._model.set_num_output_chunks(self._loss_fn.num_output_chunks)
|
||||||
log.info("Loss is initialized.")
|
log.info("Loss is initialized.")
|
||||||
|
|
||||||
self._sampler, self._dataloader = await self._setup_data(
|
self._training_sampler, self._training_dataloader = await self._setup_data(
|
||||||
|
dataset_id=self.training_config.data_config.dataset_id,
|
||||||
tokenizer=self._tokenizer,
|
tokenizer=self._tokenizer,
|
||||||
shuffle=self._shuffle,
|
shuffle=self._shuffle,
|
||||||
batch_size=self._batch_size,
|
batch_size=self._batch_size,
|
||||||
)
|
)
|
||||||
|
_, self._validation_dataloader = await self._setup_data(
|
||||||
|
dataset_id=self.training_config.data_config.validation_dataset_id,
|
||||||
|
tokenizer=self._tokenizer,
|
||||||
|
shuffle=False,
|
||||||
|
batch_size=self._batch_size,
|
||||||
|
)
|
||||||
log.info("Dataset and Sampler are initialized.")
|
log.info("Dataset and Sampler are initialized.")
|
||||||
|
|
||||||
# Number of training steps in each epoch depends on the number of batches produced
|
# Number of training steps in each epoch depends on the number of batches produced
|
||||||
|
@ -192,7 +199,7 @@ class LoraFinetuningSingleDevice:
|
||||||
# for logging and tracking training state. This should be computed after the dataloader
|
# for logging and tracking training state. This should be computed after the dataloader
|
||||||
# has been setup
|
# has been setup
|
||||||
self._steps_per_epoch = (
|
self._steps_per_epoch = (
|
||||||
len(self._dataloader) // self._gradient_accumulation_steps
|
len(self._training_dataloader) // self._gradient_accumulation_steps
|
||||||
)
|
)
|
||||||
if (
|
if (
|
||||||
self.max_steps_per_epoch is not None
|
self.max_steps_per_epoch is not None
|
||||||
|
@ -311,15 +318,19 @@ class LoraFinetuningSingleDevice:
|
||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
async def _setup_data(
|
async def _setup_data(
|
||||||
self, tokenizer: Llama3Tokenizer, shuffle: bool, batch_size: int
|
self,
|
||||||
|
dataset_id: str,
|
||||||
|
tokenizer: Llama3Tokenizer,
|
||||||
|
shuffle: bool,
|
||||||
|
batch_size: int,
|
||||||
) -> Tuple[DistributedSampler, DataLoader]:
|
) -> Tuple[DistributedSampler, DataLoader]:
|
||||||
async def fetch_rows():
|
async def fetch_rows(dataset_id: str):
|
||||||
return await self.datasetio_api.get_rows_paginated(
|
return await self.datasetio_api.get_rows_paginated(
|
||||||
dataset_id=self.training_config.data_config.dataset_id,
|
dataset_id=dataset_id,
|
||||||
rows_in_page=-1,
|
rows_in_page=-1,
|
||||||
)
|
)
|
||||||
|
|
||||||
all_rows = await fetch_rows()
|
all_rows = await fetch_rows(dataset_id)
|
||||||
rows = all_rows.rows
|
rows = all_rows.rows
|
||||||
|
|
||||||
# Curretly only support alpaca instruct dataset
|
# Curretly only support alpaca instruct dataset
|
||||||
|
@ -447,9 +458,10 @@ class LoraFinetuningSingleDevice:
|
||||||
metric_logger = DiskLogger(
|
metric_logger = DiskLogger(
|
||||||
log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}"
|
log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}"
|
||||||
)
|
)
|
||||||
self._sampler.set_epoch(curr_epoch)
|
self._training_sampler.set_epoch(curr_epoch)
|
||||||
|
loss_to_log = 0.0
|
||||||
|
|
||||||
for idx, batch in enumerate(self._dataloader):
|
for idx, batch in enumerate(self._training_dataloader):
|
||||||
if (
|
if (
|
||||||
self.max_steps_per_epoch is not None
|
self.max_steps_per_epoch is not None
|
||||||
and (idx // self._gradient_accumulation_steps)
|
and (idx // self._gradient_accumulation_steps)
|
||||||
|
@ -512,13 +524,45 @@ class LoraFinetuningSingleDevice:
|
||||||
self.epochs_run += 1
|
self.epochs_run += 1
|
||||||
log.info("Starting checkpoint save...")
|
log.info("Starting checkpoint save...")
|
||||||
checkpoint_path = await self.save_checkpoint(epoch=curr_epoch)
|
checkpoint_path = await self.save_checkpoint(epoch=curr_epoch)
|
||||||
|
validation_loss, perplexity = await self.validate()
|
||||||
|
training_metreic = PostTrainingMetric(
|
||||||
|
epoch=curr_epoch,
|
||||||
|
train_loss=loss_to_log,
|
||||||
|
validation_loss=validation_loss,
|
||||||
|
perplexity=perplexity,
|
||||||
|
)
|
||||||
checkpoint = Checkpoint(
|
checkpoint = Checkpoint(
|
||||||
identifier=f"{self.model_id}-sft-{curr_epoch}",
|
identifier=f"{self.model_id}-sft-{curr_epoch}",
|
||||||
created_at=datetime.now(),
|
created_at=datetime.now(),
|
||||||
epoch=curr_epoch,
|
epoch=curr_epoch,
|
||||||
post_training_job_id=self.job_uuid,
|
post_training_job_id=self.job_uuid,
|
||||||
path=checkpoint_path,
|
path=checkpoint_path,
|
||||||
|
training_metric=training_metreic,
|
||||||
)
|
)
|
||||||
checkpoints.append(checkpoint)
|
checkpoints.append(checkpoint)
|
||||||
|
|
||||||
return (memory_stats, checkpoints)
|
return (memory_stats, checkpoints)
|
||||||
|
|
||||||
|
async def validate(self) -> Tuple[float, float]:
|
||||||
|
total_loss = 0.0
|
||||||
|
total_tokens = 0
|
||||||
|
for idx, batch in enumerate(self._validation_dataloader):
|
||||||
|
if idx == 10:
|
||||||
|
break
|
||||||
|
torchtune_utils.batch_to_device(batch, self._device)
|
||||||
|
|
||||||
|
# Calculate the number of unmasked tokens in the current batch
|
||||||
|
# and increment the total number of tokens seen in the step
|
||||||
|
num_tokens = (batch["labels"] != self._loss_fn.ignore_index).sum()
|
||||||
|
|
||||||
|
# Loss is normalized by default so we multiply by the number of tokens
|
||||||
|
# This way we can normalize by the total number of tokens if we're accumulating gradients
|
||||||
|
loss = await self._loss_step(batch) * num_tokens
|
||||||
|
|
||||||
|
total_loss += loss
|
||||||
|
total_tokens += num_tokens
|
||||||
|
|
||||||
|
mean_loss = total_loss / total_tokens
|
||||||
|
perplexity = torch.exp(torch.tensor(mean_loss))
|
||||||
|
|
||||||
|
return mean_loss, perplexity.item()
|
||||||
|
|
|
@ -49,5 +49,20 @@ datasets:
|
||||||
type: string
|
type: string
|
||||||
text:
|
text:
|
||||||
type: string
|
type: string
|
||||||
|
- dataset_id: alpaca_eval
|
||||||
|
provider_id: huggingface-0
|
||||||
|
url:
|
||||||
|
uri: https://huggingface.co/datasets/causal-lm/code_alpaca
|
||||||
|
metadata:
|
||||||
|
path: causal-lm/code_alpaca
|
||||||
|
name:
|
||||||
|
split: validation
|
||||||
|
dataset_schema:
|
||||||
|
instruction:
|
||||||
|
type: string
|
||||||
|
input:
|
||||||
|
type: string
|
||||||
|
output:
|
||||||
|
type: string
|
||||||
scoring_fns: []
|
scoring_fns: []
|
||||||
eval_tasks: []
|
eval_tasks: []
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue