init: add mongodb in vector_io

This commit is contained in:
Young Han 2025-10-10 09:43:50 -07:00
parent 0066d986c5
commit dd1136a1ac
5 changed files with 1080 additions and 0 deletions

View file

@ -823,6 +823,132 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
optional_api_dependencies=[Api.files],
description="""
Please refer to the remote provider documentation.
""",
),
RemoteProviderSpec(
api=Api.vector_io,
adapter_type="mongodb",
provider_type="remote::mongodb",
pip_packages=["pymongo>=4.0.0"],
module="llama_stack.providers.remote.vector_io.mongodb",
config_class="llama_stack.providers.remote.vector_io.mongodb.MongoDBVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
description="""
[MongoDB Atlas](https://www.mongodb.com/products/platform/atlas-vector-search) is a remote vector database provider for Llama Stack. It
uses MongoDB Atlas Vector Search to store and query vectors in the cloud.
That means you get enterprise-grade vector search with MongoDB's scalability and reliability.
## Features
- Cloud-native vector search with MongoDB Atlas
- Fully integrated with Llama Stack
- Enterprise-grade security and scalability
- Supports multiple search modes: vector, keyword, and hybrid search
- Built-in metadata filtering and text search capabilities
- Automatic index management
## Search Modes
MongoDB Atlas Vector Search supports three different search modes:
### Vector Search
Vector search uses MongoDB's `$vectorSearch` aggregation stage to perform semantic similarity search using embedding vectors.
```python
# Vector search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="What is machine learning?",
search_mode="vector",
max_num_results=5,
)
```
### Keyword Search
Keyword search uses MongoDB's text search capabilities with full-text indexes to find chunks containing specific terms.
```python
# Keyword search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="Python programming language",
search_mode="keyword",
max_num_results=5,
)
```
### Hybrid Search
Hybrid search combines both vector and keyword search methods using configurable reranking algorithms.
```python
# Hybrid search with RRF ranker (default)
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
)
# Hybrid search with weighted ranker
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "weighted",
"alpha": 0.7, # 70% vector search, 30% keyword search
}
},
)
```
## Usage
To use MongoDB Atlas in your Llama Stack project, follow these steps:
1. Create a MongoDB Atlas cluster with Vector Search enabled
2. Install the necessary dependencies
3. Configure your Llama Stack project to use MongoDB
4. Start storing and querying vectors
## Configuration
### Environment Variables
Set up the following environment variable for your MongoDB Atlas connection:
```bash
export MONGODB_CONNECTION_STRING="mongodb+srv://username:password@cluster.mongodb.net/?retryWrites=true&w=majority&appName=llama-stack"
```
### Configuration Example
```yaml
vector_io:
- provider_id: mongodb_atlas
provider_type: remote::mongodb
config:
connection_string: "${env.MONGODB_CONNECTION_STRING}"
database_name: "llama_stack"
index_name: "vector_index"
similarity_metric: "cosine"
```
## Installation
You can install the MongoDB Python driver using pip:
```bash
pip install pymongo
```
## Documentation
See [MongoDB Atlas Vector Search documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/) for more details about MongoDB Atlas Vector Search.
For general MongoDB documentation, visit [MongoDB Documentation](https://docs.mongodb.com/).
""",
),
]