mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 20:19:52 +00:00
Docs for meta-reference-gpu
This commit is contained in:
parent
38563d7c00
commit
dd732f037f
9 changed files with 374 additions and 101 deletions
|
|
@ -1,15 +1,23 @@
|
|||
# Meta Reference Distribution
|
||||
|
||||
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations.
|
||||
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations:
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
|
||||
|
||||
|
||||
### Step 0. Prerequisite - Downloading Models
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models.
|
||||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ ls ~/.llama/checkpoints
|
||||
|
|
@ -17,55 +25,56 @@ Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3
|
|||
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
|
||||
```
|
||||
|
||||
### Step 1. Start the Distribution
|
||||
## Running the Distribution
|
||||
|
||||
#### (Option 1) Start with Docker
|
||||
```
|
||||
$ cd distributions/meta-reference-gpu && docker compose up
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a local server with access to your GPU.
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
This will download and start running a pre-built docker container. Alternatively, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
||||
#### (Option 2) Start with Conda
|
||||
### Via Conda
|
||||
|
||||
1. Install the `llama` CLI. See [CLI Reference](https://llama-stack.readthedocs.io/en/latest/cli_reference/index.html)
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
2. Build the `meta-reference-gpu` distribution
|
||||
|
||||
```
|
||||
$ llama stack build --template meta-reference-gpu --image-type conda
|
||||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
3. Start running distribution
|
||||
```
|
||||
$ cd distributions/meta-reference-gpu
|
||||
$ llama stack run ./run.yaml
|
||||
```
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
### (Optional) Serving a new model
|
||||
You may change the `config.model` in `run.yaml` to update the model currently being served by the distribution. Make sure you have the model checkpoint downloaded in your `~/.llama`.
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port 5001 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
inference:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: Llama3.2-11B-Vision-Instruct
|
||||
quantization: null
|
||||
torch_seed: null
|
||||
max_seq_len: 4096
|
||||
max_batch_size: 1
|
||||
```
|
||||
|
||||
Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue