mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
fix: raise an error when no vector DB IDs are provided to the RAG tool (#1911)
# What does this PR do?
This PR fixes the behavior of the `/tool-runtime/rag-tool/query`
endpoint when invoked with an empty `vector_db_ids` parameter.
As of now, it simply returns an empty result, which leads to a
misleading error message from the server and makes it difficult and
time-consuming to detect the problem with the input parameter.
The proposed fix is to return an indicative error message in this case.
## Test Plan
Running the following script:
```
agent = Agent(
client,
model=MODEL_ID,
instructions=SYSTEM_PROMPT,
tools=[
dict(
name="builtin::rag/knowledge_search",
args={
"vector_db_ids": [],
},
)
],
)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": "How to install OpenShift?",
}
],
session_id=agent.create_session(f"rag-session")
)
```
results in the following error message in the non-patched version:
```
{"type": "function", "name": "knowledge_search", "parameters": {"query": "installing OpenShift"}}400: Invalid value: Tool call result (id: 494b8020-90bb-449b-aa76-10960d6b2cc2, name: knowledge_search) does not have any content
```
and in the following one in the patched version:
```
{"type": "function", "name": "knowledge_search", "parameters": {"query": "installing OpenShift"}}400: Invalid value: No vector DBs were provided to the RAG tool. Please provide at least one DB.
```
This commit is contained in:
parent
f2b83800cc
commit
dd7be274b9
2 changed files with 22 additions and 1 deletions
19
tests/unit/rag/test_rag_query.py
Normal file
19
tests/unit/rag/test_rag_query.py
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
||||
|
||||
|
||||
class TestRagQuery:
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_raises_on_empty_vector_db_ids(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
||||
with pytest.raises(ValueError):
|
||||
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
|
||||
Loading…
Add table
Add a link
Reference in a new issue