feat: Podman AI Lab provider and distribution

Signed-off-by: Jeff MAURY <jmaury@redhat.com>
This commit is contained in:
Jeff MAURY 2025-03-20 16:09:15 +01:00 committed by Philippe Martin
parent 45e08ff417
commit dd86427ce3
14 changed files with 1131 additions and 0 deletions

View file

@ -0,0 +1,141 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Podman AI Lab Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-podman-ai-lab` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::podman-ai-lab` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `PODMAN_AI_LAB_URL`: URL of the Podman AI Lab server (default: `http://127.0.0.1:10434`)
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up Podman AI Lab server
Please check the [Podman AI Lab Documentation](https://github.com/containers/podman-desktop-extension-ai-lab) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
```bash
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export PODMAN_AI_LAB_SAFETY_MODEL="llama-guard3:1b"
```
## Running Llama Stack
Now you are ready to run Llama Stack with Podman AI Lab as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
export LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-podman-ai-lab \
--port $LLAMA_STACK_PORT \
--env PODMAN_AI_LAB_URL=http://host.docker.internal:10434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-podman-ai-lab \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env PODMAN_AI_LAB_URL=http://host.docker.internal:11434
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=5001
llama stack build --template podman-ai-lab --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env PODMAN_AI_LAB_URL=http://localhost:10434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env PODMAN_AI_LAB_URL=http://localhost:11434
```
### (Optional) Update Model Serving Configuration
To serve a new model with `Podman AI Lab`:
- launch Podman Desktop with Podman AI Lab extension installed
- download the model
- start an inference server for the model
To make sure that the model is being served correctly, run `curl localhost:10434/api/tags` to get a list of models being served by Podman AI Lab.
```
$ curl localhost:10434/api/tags
{"models":[{"model":"hf.ibm-research.granite-3.2-8b-instruct-GGUF","name":"ibm-research/granite-3.2-8b-instruct-GGUF","digest":"363f0bbc3200b9c9b0ab87efe237d77b1e05bb929d5d7e4b57c1447c911223e8","size":4942859552,"modified_at":"2025-03-17T14:48:32.417Z","details":{}}]}
```
To verify that the model served by Podman AI Lab is correctly connected to Llama Stack server
```bash
$ llama-stack-client models list
Available Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ llm │ ibm-research/granite-3.2-8b-instruct-GGUF │ ibm-research/granite-3.2-8b-instruct-GGUF │ │ podman-ai-lab │
└──────────────┴────────────────────────────────────────────────┴───────────────────────────────────────────────┴───────────┴────────────────┘
Total models: 1
```

View file

@ -77,6 +77,16 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.remote.inference.ollama", module="llama_stack.providers.remote.inference.ollama",
), ),
), ),
remote_provider_spec(
api=Api.inference,
api_dependencies=[Api.models],
adapter=AdapterSpec(
adapter_type="podman-ai-lab",
pip_packages=["ollama", "aiohttp"],
config_class="llama_stack.providers.remote.inference.podman_ai_lab.PodmanAILabImplConfig",
module="llama_stack.providers.remote.inference.podman_ai_lab",
),
),
remote_provider_spec( remote_provider_spec(
api=Api.inference, api=Api.inference,
adapter=AdapterSpec( adapter=AdapterSpec(

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from llama_stack.apis.datatypes import Api
from .config import PodmanAILabImplConfig
async def get_adapter_impl(config: PodmanAILabImplConfig, deps: Dict[Api, Any]):
from .podman_ai_lab import PodmanAILabInferenceAdapter
impl = PodmanAILabInferenceAdapter(config.url, deps[Api.models])
await impl.initialize()
return impl

View file

@ -0,0 +1,21 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
DEFAULT_PODMAN_AI_LAB_URL = "http://localhost:10434"
class PodmanAILabImplConfig(BaseModel):
url: str = DEFAULT_PODMAN_AI_LAB_URL
@classmethod
def sample_run_config(
cls, url: str = "${env.PODMAN_AI_LAB_URL:http://localhost:10434}", **kwargsi
) -> Dict[str, Any]:
return {"url": url}

View file

@ -0,0 +1,294 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional, Union
from ollama import AsyncClient
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
InterleavedContentItem,
TextContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model, Models
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
convert_image_content_to_url,
request_has_media,
)
logger = get_logger(name=__name__, category="inference")
class PodmanAILabInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, url: str, models: Models) -> None:
self.url = url
self.models = models
@property
def client(self) -> AsyncClient:
return AsyncClient(host=self.url)
async def initialize(self) -> None:
logger.info(f"checking connectivity to Podman AI Lab at `{self.url}`...")
try:
await self.client.list()
# for model in response["models"]:
# await self.models.register_model(model.model, model.model, 'podman-ai-lab')
except ConnectionError as e:
raise RuntimeError("Podman AI Lab Server is not running, start it using Podman Desktop") from e
async def shutdown(self) -> None:
pass
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.generate(**params)
async for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
r = await self.client.generate(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_completion_response(response)
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
stream=stream,
logprobs=logprobs,
response_format=response_format,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
sampling_options = get_sampling_options(request.sampling_params)
# This is needed since the Ollama API expects num_predict to be set
# for early truncation instead of max_tokens.
if sampling_options.get("max_tokens") is not None:
sampling_options["num_predict"] = sampling_options["max_tokens"]
input_dict = {}
media_present = request_has_media(request)
llama_model = self.register_helper.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
if media_present or not llama_model:
contents = [await convert_message_to_openai_dict_for_podman_ai_lab(m) for m in request.messages]
# flatten the list of lists
input_dict["messages"] = [item for sublist in contents for item in sublist]
else:
input_dict["raw"] = True
input_dict["prompt"] = await chat_completion_request_to_prompt(
request,
llama_model,
)
else:
assert not media_present, "Ollama does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
input_dict["raw"] = True
if fmt := request.response_format:
if fmt.type == "json_schema":
input_dict["format"] = fmt.json_schema
elif fmt.type == "grammar":
raise NotImplementedError("Grammar response format is not supported")
else:
raise ValueError(f"Unknown response format type: {fmt.type}")
params = {
"model": request.model,
**input_dict,
"options": sampling_options,
"stream": request.stream,
}
logger.debug(f"params to Podman AI Lab: {params}")
return params
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
if "messages" in params:
r = await self.client.chat(**params)
else:
r = await self.client.generate(**params)
if "message" in r:
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["message"]["content"],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(response, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
if "messages" in params:
s = await self.client.chat(**params)
else:
s = await self.client.generate(**params)
async for chunk in s:
if "message" in chunk:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["message"]["content"],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
raise NotImplementedError("embeddings endpoint is not implemented")
async def register_model(self, model: Model) -> Model:
return model
async def convert_message_to_openai_dict_for_podman_ai_lab(message: Message) -> List[dict]:
async def _convert_content(content) -> dict:
if isinstance(content, ImageContentItem):
return {
"role": message.role,
"images": [await convert_image_content_to_url(content, download=True, include_format=False)],
}
else:
text = content.text if isinstance(content, TextContentItem) else content
assert isinstance(text, str)
return {
"role": message.role,
"content": text,
}
if isinstance(message.content, list):
return [await _convert_content(c) for c in message.content]
else:
return [await _convert_content(message.content)]

View file

@ -536,6 +536,44 @@
"sentence-transformers --no-deps", "sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu" "torch torchvision --index-url https://download.pytorch.org/whl/cpu"
], ],
"podman-ai-lab": [
"aiohttp",
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
"numpy",
"ollama",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"remote-vllm": [ "remote-vllm": [
"aiosqlite", "aiosqlite",
"autoevals", "autoevals",

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .podman_ai_lab import get_distribution_template # noqa: F401

View file

@ -0,0 +1,33 @@
version: '2'
distribution_spec:
description: Use (an external) Podman AI Lab server for running LLM inference
providers:
inference:
- remote::podman-ai-lab
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::code-interpreter
- inline::rag-runtime
- remote::model-context-protocol
- remote::wolfram-alpha
image_type: conda

View file

@ -0,0 +1,131 @@
---
orphan: true
---
# Podman AI Lab Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
## Setting up Podman AI Lab server
Please check the [Podman AI Lab Documentation](https://github.com/containers/podman-desktop-extension-ai-lab) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
```bash
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export PODMAN_AI_LAB_SAFETY_MODEL="llama-guard3:1b"
```
## Running Llama Stack
Now you are ready to run Llama Stack with Podman AI Lab as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
export LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env PODMAN_AI_LAB_URL=http://host.docker.internal:10434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env PODMAN_AI_LAB_URL=http://host.docker.internal:11434
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=5001
llama stack build --template {{ name }} --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env PODMAN_AI_LAB_URL=http://localhost:10434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env PODMAN_AI_LAB_URL=http://localhost:11434
```
### (Optional) Update Model Serving Configuration
To serve a new model with `Podman AI Lab`:
- launch Podman Desktop with Podman AI Lab extension installed
- download the model
- start an inference server for the model
To make sure that the model is being served correctly, run `curl localhost:10434/api/tags` to get a list of models being served by Podman AI Lab.
```
$ curl localhost:10434/api/tags
{"models":[{"model":"hf.ibm-research.granite-3.2-8b-instruct-GGUF","name":"ibm-research/granite-3.2-8b-instruct-GGUF","digest":"363f0bbc3200b9c9b0ab87efe237d77b1e05bb929d5d7e4b57c1447c911223e8","size":4942859552,"modified_at":"2025-03-17T14:48:32.417Z","details":{}}]}
```
To verify that the model served by Podman AI Lab is correctly connected to Llama Stack server
```bash
$ llama-stack-client models list
Available Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ llm │ ibm-research/granite-3.2-8b-instruct-GGUF │ ibm-research/granite-3.2-8b-instruct-GGUF │ │ podman-ai-lab │
└──────────────┴────────────────────────────────────────────────┴───────────────────────────────────────────────┴───────────┴────────────────┘
Total models: 1
```

View file

@ -0,0 +1,137 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.podman_ai_lab import PodmanAILabImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::podman-ai-lab"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::rag-runtime",
"remote::model-context-protocol",
"remote::wolfram-alpha",
],
}
name = "podman-ai-lab"
inference_provider = Provider(
provider_id="podman-ai-lab",
provider_type="remote::podman-ai-lab",
config=PodmanAILabImplConfig.sample_run_config(),
)
vector_io_provider_faiss = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="ollama",
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
ToolGroupInput(
toolgroup_id="builtin::wolfram_alpha",
provider_id="wolfram-alpha",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use (an external) Podman AI Lab server for running LLM inference",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
"vector_io": [vector_io_provider_faiss],
},
default_models=[],
default_tool_groups=default_tool_groups,
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
"vector_io": [vector_io_provider_faiss],
"safety": [
Provider(
provider_id="llama-guard",
provider_type="inline::llama-guard",
config={},
),
Provider(
provider_id="code-scanner",
provider_type="inline::code-scanner",
config={},
),
],
},
default_models=[
safety_model,
],
default_shields=[
ShieldInput(
shield_id="${env.SAFETY_MODEL}",
provider_id="llama-guard",
),
ShieldInput(
shield_id="CodeScanner",
provider_id="code-scanner",
),
],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"PODMAN_AI_LAB_URL": (
"http://127.0.0.1:10434",
"URL of the Podman AI Lab server",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Safety model loaded into the Ollama server",
),
},
)

View file

@ -0,0 +1,44 @@
# Report for Podman AI Lab distribution
## Supported Models
| Model Descriptor | ollama |
|:---|:---|
| Llama-3-8B-Instruct | ❌ |
| Llama-3-70B-Instruct | ❌ |
| Llama3.1-8B-Instruct | ✅ |
| Llama3.1-70B-Instruct | ✅ |
| Llama3.1-405B-Instruct | ✅ |
| Llama3.2-1B-Instruct | ✅ |
| Llama3.2-3B-Instruct | ✅ |
| Llama3.2-11B-Vision-Instruct | ✅ |
| Llama3.2-90B-Vision-Instruct | ✅ |
| Llama3.3-70B-Instruct | ✅ |
| Llama-Guard-3-11B-Vision | ❌ |
| Llama-Guard-3-1B | ✅ |
| Llama-Guard-3-8B | ✅ |
| Llama-Guard-2-8B | ❌ |
## Inference
| Model | API | Capability | Test | Status |
|:----- |:-----|:-----|:-----|:-----|
| Llama-3.1-8B-Instruct | /chat_completion | streaming | test_text_chat_completion_streaming | ✅ |
| Llama-3.2-11B-Vision-Instruct | /chat_completion | streaming | test_image_chat_completion_streaming | ❌ |
| Llama-3.2-11B-Vision-Instruct | /chat_completion | non_streaming | test_image_chat_completion_non_streaming | ❌ |
| Llama-3.1-8B-Instruct | /chat_completion | non_streaming | test_text_chat_completion_non_streaming | ✅ |
| Llama-3.1-8B-Instruct | /chat_completion | tool_calling | test_text_chat_completion_with_tool_calling_and_streaming | ✅ |
| Llama-3.1-8B-Instruct | /chat_completion | tool_calling | test_text_chat_completion_with_tool_calling_and_non_streaming | ✅ |
| Llama-3.1-8B-Instruct | /completion | streaming | test_text_completion_streaming | ✅ |
| Llama-3.1-8B-Instruct | /completion | non_streaming | test_text_completion_non_streaming | ✅ |
| Llama-3.1-8B-Instruct | /completion | structured_output | test_text_completion_structured_output | ✅ |
## Vector IO
| API | Capability | Test | Status |
|:-----|:-----|:-----|:-----|
| /retrieve | | test_vector_db_retrieve | ✅ |
## Agents
| API | Capability | Test | Status |
|:-----|:-----|:-----|:-----|
| /create_agent_turn | rag | test_rag_agent | ✅ |
| /create_agent_turn | custom_tool | test_custom_tool | ✅ |
| /create_agent_turn | code_execution | test_code_interpreter_for_attachments | ✅ |

View file

@ -0,0 +1,133 @@
version: '2'
image_name: podman-ai-lab
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: podman-ai-lab
provider_type: remote::podman-ai-lab
config:
url: ${env.PODMAN_AI_LAB_URL:http://localhost:10434}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
- provider_id: code-scanner
provider_type: inline::code-scanner
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/podman-ai-lab/trace_store.db}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:}
max_results: 3
- provider_id: code-interpreter
provider_type: inline::code-interpreter
config: {}
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
- provider_id: wolfram-alpha
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/registry.db
models:
- metadata: {}
model_id: ${env.SAFETY_MODEL}
provider_id: ollama
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL}
provider_id: llama-guard
- shield_id: CodeScanner
provider_id: code-scanner
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
- toolgroup_id: builtin::code_interpreter
provider_id: code-interpreter
- toolgroup_id: builtin::wolfram_alpha
provider_id: wolfram-alpha
server:
port: 8321

View file

@ -0,0 +1,123 @@
version: '2'
image_name: podman-ai-lab
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: podman-ai-lab
provider_type: remote::podman-ai-lab
config:
url: ${env.PODMAN_AI_LAB_URL:http://localhost:10434}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/podman-ai-lab/trace_store.db}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:}
max_results: 3
- provider_id: code-interpreter
provider_type: inline::code-interpreter
config: {}
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
- provider_id: wolfram-alpha
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/podman-ai-lab}/registry.db
models: []
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
- toolgroup_id: builtin::code_interpreter
provider_id: code-interpreter
- toolgroup_id: builtin::wolfram_alpha
provider_id: wolfram-alpha
server:
port: 8321

View file

@ -259,6 +259,7 @@ exclude = [
"^llama_stack/providers/remote/inference/nvidia/", "^llama_stack/providers/remote/inference/nvidia/",
"^llama_stack/providers/remote/inference/openai/", "^llama_stack/providers/remote/inference/openai/",
"^llama_stack/providers/remote/inference/passthrough/", "^llama_stack/providers/remote/inference/passthrough/",
"^llama_stack/providers/remote/inference/podman_ai_lab/",
"^llama_stack/providers/remote/inference/runpod/", "^llama_stack/providers/remote/inference/runpod/",
"^llama_stack/providers/remote/inference/sambanova/", "^llama_stack/providers/remote/inference/sambanova/",
"^llama_stack/providers/remote/inference/sample/", "^llama_stack/providers/remote/inference/sample/",