mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
chore: Migrating VectorDB to use OpenAI compatible identifier
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
b094960199
commit
ddb29b306c
9 changed files with 44 additions and 22 deletions
10
docs/_static/llama-stack-spec.html
vendored
10
docs/_static/llama-stack-spec.html
vendored
|
@ -11285,6 +11285,9 @@
|
|||
},
|
||||
"embedding_dimension": {
|
||||
"type": "integer"
|
||||
},
|
||||
"provider_vector_db_name": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -13543,7 +13546,8 @@
|
|||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"name"
|
||||
"name",
|
||||
"provider_vector_db_id"
|
||||
],
|
||||
"title": "OpenaiCreateVectorStoreRequest"
|
||||
},
|
||||
|
@ -15571,6 +15575,10 @@
|
|||
"provider_vector_db_id": {
|
||||
"type": "string",
|
||||
"description": "The identifier of the vector database in the provider."
|
||||
},
|
||||
"provider_vector_db_name": {
|
||||
"type": "string",
|
||||
"description": "The name of the vector database."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
|
6
docs/_static/llama-stack-spec.yaml
vendored
6
docs/_static/llama-stack-spec.yaml
vendored
|
@ -7944,6 +7944,8 @@ components:
|
|||
type: string
|
||||
embedding_dimension:
|
||||
type: integer
|
||||
provider_vector_db_name:
|
||||
type: string
|
||||
additionalProperties: false
|
||||
required:
|
||||
- identifier
|
||||
|
@ -9461,6 +9463,7 @@ components:
|
|||
additionalProperties: false
|
||||
required:
|
||||
- name
|
||||
- provider_vector_db_id
|
||||
title: OpenaiCreateVectorStoreRequest
|
||||
VectorStoreFileCounts:
|
||||
type: object
|
||||
|
@ -10897,6 +10900,9 @@ components:
|
|||
type: string
|
||||
description: >-
|
||||
The identifier of the vector database in the provider.
|
||||
provider_vector_db_name:
|
||||
type: string
|
||||
description: The name of the vector database.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- vector_db_id
|
||||
|
|
|
@ -19,6 +19,7 @@ class VectorDB(Resource):
|
|||
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
provider_vector_db_name: str | None = None
|
||||
|
||||
@property
|
||||
def vector_db_id(self) -> str:
|
||||
|
@ -71,6 +72,7 @@ class VectorDBs(Protocol):
|
|||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_name: str | None = None,
|
||||
) -> VectorDB:
|
||||
"""Register a vector database.
|
||||
|
||||
|
@ -79,6 +81,7 @@ class VectorDBs(Protocol):
|
|||
:param embedding_dimension: The dimension of the embedding model.
|
||||
:param provider_id: The identifier of the provider.
|
||||
:param provider_vector_db_id: The identifier of the vector database in the provider.
|
||||
:param provider_vector_db_name: The name of the vector database.
|
||||
:returns: A VectorDB.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -346,7 +346,7 @@ class VectorIO(Protocol):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_id: str = "",
|
||||
) -> VectorStoreObject:
|
||||
"""Creates a vector store.
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
|
@ -82,6 +83,7 @@ class VectorIORouter(VectorIO):
|
|||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_name: str | None = None,
|
||||
) -> None:
|
||||
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
|
||||
await self.routing_table.register_vector_db(
|
||||
|
@ -90,6 +92,7 @@ class VectorIORouter(VectorIO):
|
|||
embedding_dimension,
|
||||
provider_id,
|
||||
provider_vector_db_id,
|
||||
provider_vector_db_name,
|
||||
)
|
||||
|
||||
async def insert_chunks(
|
||||
|
@ -123,7 +126,7 @@ class VectorIORouter(VectorIO):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = None,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_id: str = "",
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}")
|
||||
|
||||
|
@ -135,17 +138,17 @@ class VectorIORouter(VectorIO):
|
|||
embedding_model, embedding_dimension = embedding_model_info
|
||||
logger.info(f"No embedding model specified, using first available: {embedding_model}")
|
||||
|
||||
vector_db_id = name
|
||||
vector_db_id = f"vs_{uuid.uuid4()}"
|
||||
registered_vector_db = await self.routing_table.register_vector_db(
|
||||
vector_db_id,
|
||||
embedding_model,
|
||||
embedding_dimension,
|
||||
provider_id,
|
||||
provider_vector_db_id,
|
||||
name,
|
||||
)
|
||||
|
||||
return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store(
|
||||
vector_db_id,
|
||||
name,
|
||||
file_ids=file_ids,
|
||||
expires_after=expires_after,
|
||||
chunking_strategy=chunking_strategy,
|
||||
|
|
|
@ -35,9 +35,10 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_id: str = "",
|
||||
provider_vector_db_name: str | None = None,
|
||||
) -> VectorDB:
|
||||
if provider_vector_db_id is None:
|
||||
if provider_vector_db_id == "":
|
||||
provider_vector_db_id = vector_db_id
|
||||
if provider_id is None:
|
||||
if len(self.impls_by_provider_id) > 0:
|
||||
|
@ -62,6 +63,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
"provider_resource_id": provider_vector_db_id,
|
||||
"embedding_model": embedding_model,
|
||||
"embedding_dimension": model.metadata["embedding_dimension"],
|
||||
"vector_db_name": provider_vector_db_name,
|
||||
}
|
||||
vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data)
|
||||
await self.register_object(vector_db)
|
||||
|
|
|
@ -217,7 +217,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_id: str = "",
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
|
|
|
@ -247,7 +247,7 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_id: str = "",
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
|
|
|
@ -8,7 +8,6 @@ import asyncio
|
|||
import logging
|
||||
import mimetypes
|
||||
import time
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
|
||||
|
@ -144,11 +143,12 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
provider_vector_db_id: str = "",
|
||||
) -> VectorStoreObject:
|
||||
"""Creates a vector store."""
|
||||
store_id = name or str(uuid.uuid4())
|
||||
created_at = int(time.time())
|
||||
if provider_vector_db_id is None:
|
||||
raise ValueError("Provider vector DB ID is required")
|
||||
|
||||
if provider_id is None:
|
||||
raise ValueError("Provider ID is required")
|
||||
|
@ -160,13 +160,13 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
provider_vector_db_id = provider_vector_db_id or store_id
|
||||
vector_db = VectorDB(
|
||||
identifier=store_id,
|
||||
identifier=provider_vector_db_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
embedding_model=embedding_model,
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=provider_vector_db_id,
|
||||
provider_vector_db_name=name,
|
||||
)
|
||||
# Register the vector DB
|
||||
await self.register_vector_db(vector_db)
|
||||
|
@ -182,11 +182,11 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
in_progress=0,
|
||||
total=0,
|
||||
)
|
||||
store_info = {
|
||||
"id": store_id,
|
||||
store_info: dict[str, Any] = {
|
||||
"id": provider_vector_db_id,
|
||||
"object": "vector_store",
|
||||
"created_at": created_at,
|
||||
"name": store_id,
|
||||
"name": name,
|
||||
"usage_bytes": 0,
|
||||
"file_counts": file_counts.model_dump(),
|
||||
"status": status,
|
||||
|
@ -206,18 +206,18 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
store_info["metadata"] = metadata
|
||||
|
||||
# Save to persistent storage (provider-specific)
|
||||
await self._save_openai_vector_store(store_id, store_info)
|
||||
await self._save_openai_vector_store(provider_vector_db_id, store_info)
|
||||
|
||||
# Store in memory cache
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
self.openai_vector_stores[provider_vector_db_id] = store_info
|
||||
|
||||
# Now that our vector store is created, attach any files that were provided
|
||||
file_ids = file_ids or []
|
||||
tasks = [self.openai_attach_file_to_vector_store(store_id, file_id) for file_id in file_ids]
|
||||
tasks = [self.openai_attach_file_to_vector_store(provider_vector_db_id, file_id) for file_id in file_ids]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# Get the updated store info and return it
|
||||
store_info = self.openai_vector_stores[store_id]
|
||||
store_info = self.openai_vector_stores[provider_vector_db_id]
|
||||
return VectorStoreObject.model_validate(store_info)
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue