mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-05 18:22:41 +00:00
Passthrough inference support for OpenAI-compatible APIs
Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
15d37fde19
commit
de01b1455b
1 changed files with 105 additions and 1 deletions
|
@ -4,7 +4,7 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from typing import Any, AsyncGenerator, Dict, List, Optional
|
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
|
||||||
|
|
||||||
from llama_stack_client import AsyncLlamaStackClient
|
from llama_stack_client import AsyncLlamaStackClient
|
||||||
|
|
||||||
|
@ -26,9 +26,11 @@ from llama_stack.apis.inference import (
|
||||||
ToolDefinition,
|
ToolDefinition,
|
||||||
ToolPromptFormat,
|
ToolPromptFormat,
|
||||||
)
|
)
|
||||||
|
from llama_stack.apis.inference.inference import OpenAIChatCompletion, OpenAICompletion, OpenAIMessageParam
|
||||||
from llama_stack.apis.models import Model
|
from llama_stack.apis.models import Model
|
||||||
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
|
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
|
||||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||||
|
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||||
|
|
||||||
from .config import PassthroughImplConfig
|
from .config import PassthroughImplConfig
|
||||||
|
|
||||||
|
@ -201,6 +203,108 @@ class PassthroughInferenceAdapter(Inference):
|
||||||
task_type=task_type,
|
task_type=task_type,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
async def openai_completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
prompt: str,
|
||||||
|
best_of: Optional[int] = None,
|
||||||
|
echo: Optional[bool] = None,
|
||||||
|
frequency_penalty: Optional[float] = None,
|
||||||
|
logit_bias: Optional[Dict[str, float]] = None,
|
||||||
|
logprobs: Optional[bool] = None,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
n: Optional[int] = None,
|
||||||
|
presence_penalty: Optional[float] = None,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
stop: Optional[Union[str, List[str]]] = None,
|
||||||
|
stream: Optional[bool] = None,
|
||||||
|
stream_options: Optional[Dict[str, Any]] = None,
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
top_p: Optional[float] = None,
|
||||||
|
user: Optional[str] = None,
|
||||||
|
) -> OpenAICompletion:
|
||||||
|
client = self._get_client()
|
||||||
|
model_obj = await self.model_store.get_model(model)
|
||||||
|
|
||||||
|
params = await prepare_openai_completion_params(
|
||||||
|
model=model_obj.provider_resource_id,
|
||||||
|
prompt=prompt,
|
||||||
|
best_of=best_of,
|
||||||
|
echo=echo,
|
||||||
|
frequency_penalty=frequency_penalty,
|
||||||
|
logit_bias=logit_bias,
|
||||||
|
logprobs=logprobs,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
n=n,
|
||||||
|
presence_penalty=presence_penalty,
|
||||||
|
seed=seed,
|
||||||
|
stop=stop,
|
||||||
|
stream=stream,
|
||||||
|
stream_options=stream_options,
|
||||||
|
temperature=temperature,
|
||||||
|
top_p=top_p,
|
||||||
|
user=user,
|
||||||
|
)
|
||||||
|
|
||||||
|
return await client.inference.openai_completion(**params)
|
||||||
|
|
||||||
|
async def openai_chat_completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: List[OpenAIMessageParam],
|
||||||
|
frequency_penalty: Optional[float] = None,
|
||||||
|
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||||
|
functions: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
logit_bias: Optional[Dict[str, float]] = None,
|
||||||
|
logprobs: Optional[bool] = None,
|
||||||
|
max_completion_tokens: Optional[int] = None,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
n: Optional[int] = None,
|
||||||
|
parallel_tool_calls: Optional[bool] = None,
|
||||||
|
presence_penalty: Optional[float] = None,
|
||||||
|
response_format: Optional[Dict[str, str]] = None,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
stop: Optional[Union[str, List[str]]] = None,
|
||||||
|
stream: Optional[bool] = None,
|
||||||
|
stream_options: Optional[Dict[str, Any]] = None,
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||||
|
tools: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
top_logprobs: Optional[int] = None,
|
||||||
|
top_p: Optional[float] = None,
|
||||||
|
user: Optional[str] = None,
|
||||||
|
) -> OpenAIChatCompletion:
|
||||||
|
client = self._get_client()
|
||||||
|
model_obj = await self.model_store.get_model(model)
|
||||||
|
|
||||||
|
params = await prepare_openai_completion_params(
|
||||||
|
model=model_obj.provider_resource_id,
|
||||||
|
messages=messages,
|
||||||
|
frequency_penalty=frequency_penalty,
|
||||||
|
function_call=function_call,
|
||||||
|
functions=functions,
|
||||||
|
logit_bias=logit_bias,
|
||||||
|
logprobs=logprobs,
|
||||||
|
max_completion_tokens=max_completion_tokens,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
n=n,
|
||||||
|
parallel_tool_calls=parallel_tool_calls,
|
||||||
|
presence_penalty=presence_penalty,
|
||||||
|
response_format=response_format,
|
||||||
|
seed=seed,
|
||||||
|
stop=stop,
|
||||||
|
stream=stream,
|
||||||
|
stream_options=stream_options,
|
||||||
|
temperature=temperature,
|
||||||
|
tool_choice=tool_choice,
|
||||||
|
tools=tools,
|
||||||
|
top_logprobs=top_logprobs,
|
||||||
|
top_p=top_p,
|
||||||
|
user=user,
|
||||||
|
)
|
||||||
|
|
||||||
|
return await client.inference.openai_chat_completion(**params)
|
||||||
|
|
||||||
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
|
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
json_params = {}
|
json_params = {}
|
||||||
for key, value in request_params.items():
|
for key, value in request_params.items():
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue