temp commit

This commit is contained in:
Botao Chen 2024-12-12 21:44:03 -08:00
parent 8efe33646d
commit de44af1501
9 changed files with 153 additions and 53 deletions

View file

@ -90,6 +90,7 @@ class InferenceRouter(Inference):
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> None:
print("inference router")
await self.routing_table.register_model(
model_id, provider_model_id, provider_id, metadata, model_type
)

View file

@ -32,6 +32,7 @@ def get_impl_api(p: Any) -> Api:
async def register_object_with_provider(obj: RoutableObject, p: Any) -> RoutableObject:
api = get_impl_api(p)
print("registering object with provider", api)
assert obj.provider_id != "remote", "Remote provider should not be registered"
@ -169,6 +170,7 @@ class CommonRoutingTableImpl(RoutingTable):
async def register_object(
self, obj: RoutableObjectWithProvider
) -> RoutableObjectWithProvider:
# Get existing objects from registry
existing_obj = await self.dist_registry.get(obj.type, obj.identifier)
@ -181,7 +183,12 @@ class CommonRoutingTableImpl(RoutingTable):
p = self.impls_by_provider_id[obj.provider_id]
if obj is None:
print("obj is None")
registered_obj = await register_object_with_provider(obj, p)
if registered_obj is None:
print("registered_obj is None")
# TODO: This needs to be fixed for all APIs once they return the registered object
if obj.type == ResourceType.model.value:
await self.dist_registry.register(registered_obj)
@ -211,6 +218,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> Model:
print("register_model", model_id)
if provider_model_id is None:
provider_model_id = model_id
if provider_id is None:
@ -239,7 +247,11 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
metadata=metadata,
model_type=model_type,
)
if model is None:
print("model is None!!!")
print("before registered_model")
registered_model = await self.register_object(model)
print("after registered_model")
return registered_model
async def unregister_model(self, model_id: str) -> None:

View file

@ -15,6 +15,10 @@ async def get_provider_impl(
):
from .inference import MetaReferenceInferenceImpl
print("get_provider_impl")
impl = MetaReferenceInferenceImpl(config)
await impl.initialize()
if config.model:
# pre-load the model if the model is in the config
await impl.initialize()
return impl

View file

@ -10,16 +10,13 @@ from llama_models.datatypes import * # noqa: F403
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import * # noqa: F401, F403
from pydantic import BaseModel, Field, field_validator
from pydantic import BaseModel, field_validator
from llama_stack.providers.utils.inference import supported_inference_models
class MetaReferenceInferenceConfig(BaseModel):
model: str = Field(
default="Llama3.2-3B-Instruct",
description="Model descriptor from `llama model list`",
)
model: Optional[str] = None
torch_seed: Optional[int] = None
max_seq_len: int = 4096
max_batch_size: int = 1

View file

@ -79,6 +79,7 @@ class Llama:
config: Union[
MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
],
request: Optional[Union[CompletionRequest, ChatCompletionRequest]] = None,
):
"""
Build a Llama instance by initializing and loading a model checkpoint.
@ -87,10 +88,13 @@ class Llama:
This method initializes the distributed process group, sets the device to CUDA,
and loads the pre-trained model and tokenizer.
"""
model = await self.model_store.get_model(config.model)
base_model = model.metadata["base_model"] or self.model_id
self.model = resolve_model(base_model)
model = resolve_model(config.model)
if config.model:
model = resolve_model(config.model)
elif request:
model = resolve_model(request.model)
else:
raise RuntimeError("you need to provide a model for inference")
llama_model = model.core_model_id.value
if not torch.distributed.is_initialized():

View file

@ -11,6 +11,8 @@ from typing import AsyncGenerator, List
from llama_models.sku_list import resolve_model
from llama_stack.apis.models import Model as LlamaStackModel
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import build_model_alias
@ -41,49 +43,77 @@ class MetaReferenceInferenceImpl(
ModelsProtocolPrivate,
):
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
print("MetaReferenceInferenceImpl init")
self.config = config
self.model_id = config.model
self.model = None
self.model_registry_helper = None
if config.model:
model = resolve_model(config.model)
if model is None:
raise RuntimeError(
f"Unknown model: {config.model}, Run `llama model list`"
)
self.model_registry_helper = ModelRegistryHelper(
[
build_model_alias(
model.descriptor(),
model.core_model_id.value,
)
],
)
self.model = model
# verify that the checkpoint actually is for this model lol
else:
print("inference model isn't pre-loaded")
async def _setup_model(self, model_id: str) -> Optional[Model]:
model = resolve_model(model_id)
if model is None:
raise RuntimeError(f"Unknown model: {model_id}, Run `llama model list`")
# self.model_registry_helper = ModelRegistryHelper(
# [
# build_model_alias(
# model.descriptor(),
# model.core_model_id.value,
# )
# ],
# )
# return await self.register_model(model)
return model
async def initialize(self) -> None:
model = await self.model_store.get_model(self.model_id)
base_model = model.metadata["base_model"] or self.model_id
self.model = resolve_model(base_model)
if self.model is None:
raise RuntimeError(
f"Unknown model: {self.model_id}, Run please check if the model or base_Model is a native llama model"
)
self.model_registry_helper = ModelRegistryHelper(
[
build_model_alias(
model.descriptor(),
model.core_model_id.value,
)
],
)
raise RuntimeError("model hasn't been setup yet")
log.info(f"Loading model `{self.model.descriptor()}`")
if self.config.create_distributed_process_group:
self.generator = LlamaModelParallelGenerator(self.config)
self.generator.start()
else:
self.generator = Llama.build(self.config)
async def _lazy_initialize(self, request) -> None:
if self.model is None:
raise RuntimeError("model hasn't been setup yet")
print(f"Lazy loading model `{self.model.descriptor()}`")
if self.config.create_distributed_process_group:
# with LlamaModelParallelGenerator(self.config, request) as resouce:
self.generator = LlamaModelParallelGenerator(self.config, request)
self.generator.start()
else:
self.generator = Llama.build(self.config, request)
async def shutdown(self) -> None:
if self.config.create_distributed_process_group:
self.generator.stop()
async def check_model(self, request) -> None:
request_model = await self.model_store.get_model(request.model)
base_model = request_model.metadata["base_model"] or request.model
model = resolve_model(base_model)
def check_model(self, request) -> None:
model = resolve_model(request.model)
if model is None:
raise RuntimeError(
f"Unknown model: {request.model}, Run please check if the model or base_Model is a native llama model"
f"Unknown model: {request.model}, Run `llama model list`"
)
elif model.descriptor() != self.model.descriptor():
elif self.model and model.descriptor() != self.model.descriptor():
raise RuntimeError(
f"Model mismatch: {request.model} != {self.model.descriptor()}"
)
@ -91,8 +121,23 @@ class MetaReferenceInferenceImpl(
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: Model) -> Model:
async def register_model(self, model: LlamaStackModel) -> LlamaStackModel:
if self.model_registry_helper is None:
llama_model = resolve_model(model.identifier)
if llama_model is None:
raise RuntimeError(
f"Unknown model: {model.identifier}, Run `llama model list`"
)
self.model_registry_helper = ModelRegistryHelper(
[
build_model_alias(
llama_model.descriptor(),
llama_model.core_model_id.value,
)
],
)
model = await self.model_registry_helper.register_model(model)
print("model type", type(model))
if model.model_type == ModelType.embedding_model:
self._load_sentence_transformer_model(model.provider_resource_id)
return model
@ -117,7 +162,7 @@ class MetaReferenceInferenceImpl(
stream=stream,
logprobs=logprobs,
)
await self.check_model(request)
self.check_model(request)
request = await request_with_localized_media(request)
if request.stream:
@ -126,6 +171,10 @@ class MetaReferenceInferenceImpl(
return await self._nonstream_completion(request)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
if self.model is None:
self.model = await self._setup_model(request.model)
await self._lazy_initialize(request)
def impl():
stop_reason = None
@ -175,6 +224,10 @@ class MetaReferenceInferenceImpl(
async def _nonstream_completion(
self, request: CompletionRequest
) -> CompletionResponse:
if self.model is None:
self.model = await self._setup_model(request.model)
await self._lazy_initialize(request)
def impl():
tokens = []
logprobs = []
@ -242,7 +295,7 @@ class MetaReferenceInferenceImpl(
stream=stream,
logprobs=logprobs,
)
await self.check_model(request)
self.check_model(request)
request = await request_with_localized_media(request)
if self.config.create_distributed_process_group:
@ -257,6 +310,10 @@ class MetaReferenceInferenceImpl(
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
if self.model is None:
self.model = await self._setup_model(request.model)
await self._lazy_initialize(request)
def impl():
tokens = []
logprobs = []
@ -294,6 +351,7 @@ class MetaReferenceInferenceImpl(
if self.config.create_distributed_process_group:
async with SEMAPHORE:
print("after SEMAPHORE")
return impl()
else:
return impl()
@ -301,6 +359,10 @@ class MetaReferenceInferenceImpl(
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
if self.model is None:
self.model = await self._setup_model(request.model)
await self._lazy_initialize(request)
def impl():
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(

View file

@ -7,7 +7,7 @@
import os
from copy import deepcopy
from functools import partial
from typing import Any, Generator
from typing import Any, Generator, Optional, Union
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
@ -34,8 +34,11 @@ class ModelRunner:
raise ValueError(f"Unexpected task type {type(req)}")
def init_model_cb(config: MetaReferenceInferenceConfig):
llama = Llama.build(config)
def init_model_cb(
config: MetaReferenceInferenceConfig,
request: Optional[Union[CompletionRequest, ChatCompletionRequest]] = None,
):
llama = Llama.build(config, request)
return ModelRunner(llama)
@ -50,9 +53,21 @@ class LlamaModelParallelGenerator:
clear at the callsite why we need to use a context manager.
"""
def __init__(self, config: MetaReferenceInferenceConfig):
def __init__(
self,
config: MetaReferenceInferenceConfig,
request: Optional[Union[CompletionRequest, ChatCompletionRequest]] = None,
):
print("LlamaModelParallelGenerator init")
self.config = config
self.model = resolve_model(self.config.model)
self.request = request
if config.model:
self.model = resolve_model(config.model)
elif request:
self.model = resolve_model(request.model)
else:
raise RuntimeError("you need to provide a model for inference")
# this is a hack because Agent's loop uses this to tokenize and check if input is too long
# while the tool-use loop is going
checkpoint_dir = model_checkpoint_dir(self.model)
@ -66,9 +81,15 @@ class LlamaModelParallelGenerator:
self.__exit__(None, None, None)
def __enter__(self):
print("enter LlamaModelParallelGenerator")
if self.config.model_parallel_size:
model_parallel_size = self.config.model_parallel_size
else:
model_parallel_size = resolve_model(self.model).pth_file_count
self.group = ModelParallelProcessGroup(
self.config.model_parallel_size,
init_model_cb=partial(init_model_cb, self.config),
model_parallel_size,
init_model_cb=partial(init_model_cb, self.config, self.request),
)
self.group.start()
return self

View file

@ -27,8 +27,7 @@ def supported_inference_models() -> List[Model]:
m
for m in all_registered_models()
if (
m.model_family
in {ModelFamily.llama3_1, ModelFamily.llama3_2, ModelFamily.llama3_3}
m.model_family in {ModelFamily.llama3_1, ModelFamily.llama3_2}
or is_supported_safety_model(m)
)
]

View file

@ -16,7 +16,7 @@ providers:
- provider_id: meta-reference-inference
provider_type: inline::meta-reference
config:
model: ${env.INFERENCE_MODEL}
# model: ${env.INFERENCE_MODEL}
max_seq_len: 4096
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
memory:
@ -72,11 +72,11 @@ metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: meta-reference-inference
provider_model_id: null
models: []
# - metadata: {}
# model_id: ${env.INFERENCE_MODEL}
# provider_id: meta-reference-inference
# provider_model_id: null
shields: []
memory_banks: []
datasets: []