mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 17:20:02 +00:00
temp commit
This commit is contained in:
parent
8efe33646d
commit
de44af1501
9 changed files with 153 additions and 53 deletions
|
|
@ -11,6 +11,8 @@ from typing import AsyncGenerator, List
|
|||
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from llama_stack.apis.models import Model as LlamaStackModel
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import build_model_alias
|
||||
|
|
@ -41,49 +43,77 @@ class MetaReferenceInferenceImpl(
|
|||
ModelsProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
||||
print("MetaReferenceInferenceImpl init")
|
||||
self.config = config
|
||||
self.model_id = config.model
|
||||
self.model = None
|
||||
self.model_registry_helper = None
|
||||
if config.model:
|
||||
model = resolve_model(config.model)
|
||||
if model is None:
|
||||
raise RuntimeError(
|
||||
f"Unknown model: {config.model}, Run `llama model list`"
|
||||
)
|
||||
self.model_registry_helper = ModelRegistryHelper(
|
||||
[
|
||||
build_model_alias(
|
||||
model.descriptor(),
|
||||
model.core_model_id.value,
|
||||
)
|
||||
],
|
||||
)
|
||||
self.model = model
|
||||
# verify that the checkpoint actually is for this model lol
|
||||
else:
|
||||
print("inference model isn't pre-loaded")
|
||||
|
||||
async def _setup_model(self, model_id: str) -> Optional[Model]:
|
||||
model = resolve_model(model_id)
|
||||
if model is None:
|
||||
raise RuntimeError(f"Unknown model: {model_id}, Run `llama model list`")
|
||||
# self.model_registry_helper = ModelRegistryHelper(
|
||||
# [
|
||||
# build_model_alias(
|
||||
# model.descriptor(),
|
||||
# model.core_model_id.value,
|
||||
# )
|
||||
# ],
|
||||
# )
|
||||
|
||||
# return await self.register_model(model)
|
||||
return model
|
||||
|
||||
async def initialize(self) -> None:
|
||||
model = await self.model_store.get_model(self.model_id)
|
||||
base_model = model.metadata["base_model"] or self.model_id
|
||||
self.model = resolve_model(base_model)
|
||||
|
||||
if self.model is None:
|
||||
raise RuntimeError(
|
||||
f"Unknown model: {self.model_id}, Run please check if the model or base_Model is a native llama model"
|
||||
)
|
||||
|
||||
self.model_registry_helper = ModelRegistryHelper(
|
||||
[
|
||||
build_model_alias(
|
||||
model.descriptor(),
|
||||
model.core_model_id.value,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
raise RuntimeError("model hasn't been setup yet")
|
||||
log.info(f"Loading model `{self.model.descriptor()}`")
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
self.generator = LlamaModelParallelGenerator(self.config)
|
||||
self.generator.start()
|
||||
else:
|
||||
self.generator = Llama.build(self.config)
|
||||
|
||||
async def _lazy_initialize(self, request) -> None:
|
||||
if self.model is None:
|
||||
raise RuntimeError("model hasn't been setup yet")
|
||||
print(f"Lazy loading model `{self.model.descriptor()}`")
|
||||
if self.config.create_distributed_process_group:
|
||||
# with LlamaModelParallelGenerator(self.config, request) as resouce:
|
||||
self.generator = LlamaModelParallelGenerator(self.config, request)
|
||||
self.generator.start()
|
||||
else:
|
||||
self.generator = Llama.build(self.config, request)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self.config.create_distributed_process_group:
|
||||
self.generator.stop()
|
||||
|
||||
async def check_model(self, request) -> None:
|
||||
request_model = await self.model_store.get_model(request.model)
|
||||
base_model = request_model.metadata["base_model"] or request.model
|
||||
model = resolve_model(base_model)
|
||||
def check_model(self, request) -> None:
|
||||
model = resolve_model(request.model)
|
||||
if model is None:
|
||||
raise RuntimeError(
|
||||
f"Unknown model: {request.model}, Run please check if the model or base_Model is a native llama model"
|
||||
f"Unknown model: {request.model}, Run `llama model list`"
|
||||
)
|
||||
elif model.descriptor() != self.model.descriptor():
|
||||
elif self.model and model.descriptor() != self.model.descriptor():
|
||||
raise RuntimeError(
|
||||
f"Model mismatch: {request.model} != {self.model.descriptor()}"
|
||||
)
|
||||
|
|
@ -91,8 +121,23 @@ class MetaReferenceInferenceImpl(
|
|||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
async def register_model(self, model: LlamaStackModel) -> LlamaStackModel:
|
||||
if self.model_registry_helper is None:
|
||||
llama_model = resolve_model(model.identifier)
|
||||
if llama_model is None:
|
||||
raise RuntimeError(
|
||||
f"Unknown model: {model.identifier}, Run `llama model list`"
|
||||
)
|
||||
self.model_registry_helper = ModelRegistryHelper(
|
||||
[
|
||||
build_model_alias(
|
||||
llama_model.descriptor(),
|
||||
llama_model.core_model_id.value,
|
||||
)
|
||||
],
|
||||
)
|
||||
model = await self.model_registry_helper.register_model(model)
|
||||
print("model type", type(model))
|
||||
if model.model_type == ModelType.embedding_model:
|
||||
self._load_sentence_transformer_model(model.provider_resource_id)
|
||||
return model
|
||||
|
|
@ -117,7 +162,7 @@ class MetaReferenceInferenceImpl(
|
|||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
await self.check_model(request)
|
||||
self.check_model(request)
|
||||
request = await request_with_localized_media(request)
|
||||
|
||||
if request.stream:
|
||||
|
|
@ -126,6 +171,10 @@ class MetaReferenceInferenceImpl(
|
|||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
if self.model is None:
|
||||
self.model = await self._setup_model(request.model)
|
||||
await self._lazy_initialize(request)
|
||||
|
||||
def impl():
|
||||
stop_reason = None
|
||||
|
||||
|
|
@ -175,6 +224,10 @@ class MetaReferenceInferenceImpl(
|
|||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
if self.model is None:
|
||||
self.model = await self._setup_model(request.model)
|
||||
await self._lazy_initialize(request)
|
||||
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
|
@ -242,7 +295,7 @@ class MetaReferenceInferenceImpl(
|
|||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
await self.check_model(request)
|
||||
self.check_model(request)
|
||||
request = await request_with_localized_media(request)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
|
|
@ -257,6 +310,10 @@ class MetaReferenceInferenceImpl(
|
|||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
if self.model is None:
|
||||
self.model = await self._setup_model(request.model)
|
||||
await self._lazy_initialize(request)
|
||||
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
|
@ -294,6 +351,7 @@ class MetaReferenceInferenceImpl(
|
|||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
print("after SEMAPHORE")
|
||||
return impl()
|
||||
else:
|
||||
return impl()
|
||||
|
|
@ -301,6 +359,10 @@ class MetaReferenceInferenceImpl(
|
|||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
if self.model is None:
|
||||
self.model = await self._setup_model(request.model)
|
||||
await self._lazy_initialize(request)
|
||||
|
||||
def impl():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue