mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-15 09:36:10 +00:00
Implement attaching files to vector stores
This adds the ability to attach files to vector stores (client.vector_stores.files.create) for the OpenAI Vector Stores Files API. The initial implementation is only for Faiss, and tested via the existing test_responses.py::test_response_non_streaming_file_search. Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
8ede67b809
commit
de84ee0748
12 changed files with 689 additions and 28 deletions
|
@ -8,7 +8,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Literal, Protocol, runtime_checkable
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
@ -16,6 +16,7 @@ from llama_stack.apis.inference import InterleavedContent
|
|||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.strong_typing.schema import register_schema
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
|
@ -133,6 +134,50 @@ class VectorStoreDeleteResponse(BaseModel):
|
|||
deleted: bool = True
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreChunkingStrategyAuto(BaseModel):
|
||||
type: Literal["auto"] = "auto"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreChunkingStrategyStaticConfig(BaseModel):
|
||||
chunk_overlap_tokens: int = 400
|
||||
max_chunk_size_tokens: int = Field(800, ge=100, le=4096)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreChunkingStrategyStatic(BaseModel):
|
||||
type: Literal["static"] = "static"
|
||||
static: VectorStoreChunkingStrategyStaticConfig
|
||||
|
||||
|
||||
VectorStoreChunkingStrategy = Annotated[
|
||||
VectorStoreChunkingStrategyAuto | VectorStoreChunkingStrategyStatic, Field(discriminator="type")
|
||||
]
|
||||
register_schema(VectorStoreChunkingStrategy, name="VectorStoreChunkingStrategy")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileLastError(BaseModel):
|
||||
code: Literal["server_error"] | Literal["rate_limit_exceeded"]
|
||||
message: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileObject(BaseModel):
|
||||
"""OpenAI Vector Store File object."""
|
||||
|
||||
id: str
|
||||
object: str = "vector_store.file"
|
||||
attributes: dict[str, Any] = Field(default_factory=dict)
|
||||
chunking_strategy: VectorStoreChunkingStrategy
|
||||
created_at: int
|
||||
last_error: VectorStoreFileLastError | None = None
|
||||
status: Literal["completed"] | Literal["in_progress"] | Literal["cancelled"] | Literal["failed"]
|
||||
usage_bytes: int = 0
|
||||
vector_store_id: str
|
||||
|
||||
|
||||
class VectorDBStore(Protocol):
|
||||
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
|
||||
|
||||
|
@ -290,3 +335,21 @@ class VectorIO(Protocol):
|
|||
:returns: A VectorStoreSearchResponse containing the search results.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files", method="POST")
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
"""Attach a file to a vector store.
|
||||
|
||||
:param vector_store_id: The ID of the vector store to attach the file to.
|
||||
:param file_id: The ID of the file to attach to the vector store.
|
||||
:param attributes: The key-value attributes stored with the file, which can be used for filtering.
|
||||
:param chunking_strategy: The chunking strategy to use for the file.
|
||||
:returns: A VectorStoreFileObject representing the attached file.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -19,6 +19,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import RoutingTable
|
||||
|
||||
|
@ -254,3 +255,20 @@ class VectorIORouter(VectorIO):
|
|||
ranking_options=ranking_options,
|
||||
rewrite_query=rewrite_query,
|
||||
)
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
logger.debug(f"VectorIORouter.openai_attach_file_to_vector_store: {vector_store_id}, {file_id}")
|
||||
# Route based on vector store ID
|
||||
provider = self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_attach_file_to_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
|
|
|
@ -16,6 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]):
|
|||
|
||||
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = FaissVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps[Api.files])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -9,20 +9,30 @@ import base64
|
|||
import io
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import faiss
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.tools.rag_tool import RAGDocument
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
)
|
||||
from llama_stack.apis.vector_io.vector_io import (
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreChunkingStrategyAuto,
|
||||
VectorStoreChunkingStrategyStatic,
|
||||
VectorStoreFileLastError,
|
||||
VectorStoreFileObject,
|
||||
)
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
|
@ -30,6 +40,8 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIV
|
|||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
content_from_doc,
|
||||
make_overlapped_chunks,
|
||||
)
|
||||
|
||||
from .config import FaissVectorIOConfig
|
||||
|
@ -132,9 +144,10 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
@ -250,3 +263,71 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
attributes = attributes or {}
|
||||
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
|
||||
|
||||
vector_store_file_object = VectorStoreFileObject(
|
||||
id=file_id,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
created_at=int(time.time()),
|
||||
status="in_progress",
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
||||
if isinstance(chunking_strategy, VectorStoreChunkingStrategyStatic):
|
||||
max_chunk_size_tokens = chunking_strategy.static.max_chunk_size_tokens
|
||||
chunk_overlap_tokens = chunking_strategy.static.chunk_overlap_tokens
|
||||
else:
|
||||
# Default values from OpenAI API docs
|
||||
max_chunk_size_tokens = 800
|
||||
chunk_overlap_tokens = 400
|
||||
|
||||
try:
|
||||
content_response = await self.files_api.openai_retrieve_file_content(file_id)
|
||||
content = content_response.body
|
||||
doc = RAGDocument(
|
||||
document_id=file_id,
|
||||
content=content,
|
||||
metadata=attributes,
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
chunks = make_overlapped_chunks(
|
||||
doc.document_id,
|
||||
content,
|
||||
max_chunk_size_tokens,
|
||||
chunk_overlap_tokens,
|
||||
doc.metadata,
|
||||
)
|
||||
|
||||
if not chunks:
|
||||
vector_store_file_object.status = "failed"
|
||||
vector_store_file_object.last_error = VectorStoreFileLastError(
|
||||
code="server_error",
|
||||
message="No chunks were generated from the file",
|
||||
)
|
||||
return vector_store_file_object
|
||||
|
||||
await self.insert_chunks(
|
||||
vector_db_id=vector_store_id,
|
||||
chunks=chunks,
|
||||
)
|
||||
except Exception as e:
|
||||
vector_store_file_object.status = "failed"
|
||||
vector_store_file_object.last_error = VectorStoreFileLastError(
|
||||
code="server_error",
|
||||
message=str(e),
|
||||
)
|
||||
return vector_store_file_object
|
||||
|
||||
vector_store_file_object.status = "completed"
|
||||
|
||||
return vector_store_file_object
|
||||
|
|
|
@ -24,6 +24,7 @@ from llama_stack.apis.vector_io import (
|
|||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
)
|
||||
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import EmbeddingIndex, VectorDBWithIndex
|
||||
|
@ -489,6 +490,15 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
return await self.cache[vector_db_id].query_chunks(query, params)
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores Files API is not supported in sqlite_vec")
|
||||
|
||||
|
||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||
|
|
|
@ -31,7 +31,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
pip_packages=["faiss-cpu"],
|
||||
module="llama_stack.providers.inline.vector_io.faiss",
|
||||
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
api_dependencies=[Api.inference, Api.files],
|
||||
),
|
||||
# NOTE: sqlite-vec cannot be bundled into the container image because it does not have a
|
||||
# source distribution and the wheels are not available for all platforms.
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
|
@ -241,3 +242,12 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
|
|
@ -25,6 +25,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
|
@ -240,6 +241,15 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
|
||||
|
||||
|
||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
|
@ -241,3 +242,12 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
rewrite_query: bool | None = False,
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue