Implement attaching files to vector stores

This adds the ability to attach files to vector
stores (client.vector_stores.files.create) for the OpenAI Vector
Stores Files API.

The initial implementation is only for Faiss, and tested via the
existing test_responses.py::test_response_non_streaming_file_search.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-11 11:14:38 -04:00
parent 8ede67b809
commit de84ee0748
12 changed files with 689 additions and 28 deletions

View file

@ -16,6 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]):
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = FaissVectorIOAdapter(config, deps[Api.inference])
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps[Api.files])
await impl.initialize()
return impl

View file

@ -9,20 +9,30 @@ import base64
import io
import json
import logging
import time
from typing import Any
import faiss
import numpy as np
from numpy.typing import NDArray
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.tools.rag_tool import RAGDocument
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyAuto,
VectorStoreChunkingStrategyStatic,
VectorStoreFileLastError,
VectorStoreFileObject,
)
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
@ -30,6 +40,8 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIV
from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
VectorDBWithIndex,
content_from_doc,
make_overlapped_chunks,
)
from .config import FaissVectorIOConfig
@ -132,9 +144,10 @@ class FaissIndex(EmbeddingIndex):
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files) -> None:
self.config = config
self.inference_api = inference_api
self.files_api = files_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.kvstore: KVStore | None = None
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
@ -250,3 +263,71 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key)
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
attributes = attributes or {}
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
vector_store_file_object = VectorStoreFileObject(
id=file_id,
attributes=attributes,
chunking_strategy=chunking_strategy,
created_at=int(time.time()),
status="in_progress",
vector_store_id=vector_store_id,
)
if isinstance(chunking_strategy, VectorStoreChunkingStrategyStatic):
max_chunk_size_tokens = chunking_strategy.static.max_chunk_size_tokens
chunk_overlap_tokens = chunking_strategy.static.chunk_overlap_tokens
else:
# Default values from OpenAI API docs
max_chunk_size_tokens = 800
chunk_overlap_tokens = 400
try:
content_response = await self.files_api.openai_retrieve_file_content(file_id)
content = content_response.body
doc = RAGDocument(
document_id=file_id,
content=content,
metadata=attributes,
)
content = await content_from_doc(doc)
chunks = make_overlapped_chunks(
doc.document_id,
content,
max_chunk_size_tokens,
chunk_overlap_tokens,
doc.metadata,
)
if not chunks:
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message="No chunks were generated from the file",
)
return vector_store_file_object
await self.insert_chunks(
vector_db_id=vector_store_id,
chunks=chunks,
)
except Exception as e:
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message=str(e),
)
return vector_store_file_object
vector_store_file_object.status = "completed"
return vector_store_file_object

View file

@ -24,6 +24,7 @@ from llama_stack.apis.vector_io import (
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import EmbeddingIndex, VectorDBWithIndex
@ -489,6 +490,15 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
raise ValueError(f"Vector DB {vector_db_id} not found")
return await self.cache[vector_db_id].query_chunks(query, params)
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores Files API is not supported in sqlite_vec")
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text."""