Update Strategy in SamplingParams to be a union

This commit is contained in:
Hardik Shah 2025-01-14 15:56:02 -08:00 committed by Ashwin Bharambe
parent 300e6e2702
commit dea575c994
28 changed files with 600 additions and 377 deletions

View file

@ -13,7 +13,6 @@ from termcolor import colored
from llama_stack.cli.subcommand import Subcommand
from llama_stack.cli.table import print_table
from llama_stack.distribution.utils.serialize import EnumEncoder
class ModelDescribe(Subcommand):
@ -72,7 +71,7 @@ class ModelDescribe(Subcommand):
rows.append(
(
"Recommended sampling params",
json.dumps(sampling_params, cls=EnumEncoder, indent=4),
json.dumps(sampling_params, indent=4),
)
)

View file

@ -58,11 +58,6 @@ def define_eval_candidate_2():
# Sampling Parameters
st.markdown("##### Sampling Parameters")
strategy = st.selectbox(
"Strategy",
["greedy", "top_p", "top_k"],
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
@ -95,13 +90,20 @@ def define_eval_candidate_2():
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
if candidate_type == "model":
if temperature > 0.0:
strategy = {
"type": "top_p",
"temperature": temperature,
"top_p": top_p,
}
else:
strategy = {"type": "greedy"}
eval_candidate = {
"type": "model",
"model": selected_model,
"sampling_params": {
"strategy": strategy,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},

View file

@ -95,6 +95,15 @@ if prompt := st.chat_input("Example: What is Llama Stack?"):
message_placeholder = st.empty()
full_response = ""
if temperature > 0.0:
strategy = {
"type": "top_p",
"temperature": temperature,
"top_p": top_p,
}
else:
strategy = {"type": "greedy"}
response = llama_stack_api.client.inference.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
@ -103,8 +112,7 @@ if prompt := st.chat_input("Example: What is Llama Stack?"):
model_id=selected_model,
stream=stream,
sampling_params={
"temperature": temperature,
"top_p": top_p,
"strategy": strategy,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},

View file

@ -118,13 +118,20 @@ def rag_chat_page():
with st.chat_message(message["role"]):
st.markdown(message["content"])
if temperature > 0.0:
strategy = {
"type": "top_p",
"temperature": temperature,
"top_p": top_p,
}
else:
strategy = {"type": "greedy"}
agent_config = AgentConfig(
model=selected_model,
instructions=system_prompt,
sampling_params={
"strategy": "greedy",
"temperature": temperature,
"top_p": top_p,
"strategy": strategy,
},
tools=[
{

View file

@ -23,6 +23,11 @@ from fairscale.nn.model_parallel.initialize import (
initialize_model_parallel,
model_parallel_is_initialized,
)
from llama_models.datatypes import (
GreedySamplingStrategy,
SamplingParams,
TopPSamplingStrategy,
)
from llama_models.llama3.api.args import ModelArgs
from llama_models.llama3.api.chat_format import ChatFormat, LLMInput
from llama_models.llama3.api.datatypes import Model
@ -363,11 +368,12 @@ class Llama:
max_gen_len = self.model.params.max_seq_len - 1
model_input = self.formatter.encode_content(request.content)
temperature, top_p = _infer_sampling_params(sampling_params)
yield from self.generate(
model_input=model_input,
max_gen_len=max_gen_len,
temperature=sampling_params.temperature,
top_p=sampling_params.top_p,
temperature=temperature,
top_p=top_p,
logprobs=bool(request.logprobs),
include_stop_token=True,
logits_processor=get_logits_processor(
@ -390,14 +396,15 @@ class Llama:
):
max_gen_len = self.model.params.max_seq_len - 1
temperature, top_p = _infer_sampling_params(sampling_params)
yield from self.generate(
model_input=self.formatter.encode_dialog_prompt(
request.messages,
request.tool_prompt_format,
),
max_gen_len=max_gen_len,
temperature=sampling_params.temperature,
top_p=sampling_params.top_p,
temperature=temperature,
top_p=top_p,
logprobs=bool(request.logprobs),
include_stop_token=True,
logits_processor=get_logits_processor(
@ -492,3 +499,15 @@ def _build_regular_tokens_list(
is_word_start_token = len(decoded_after_0) > len(decoded_regular)
regular_tokens.append((token_idx, decoded_after_0, is_word_start_token))
return regular_tokens
def _infer_sampling_params(sampling_params: SamplingParams):
if isinstance(sampling_params.strategy, GreedySamplingStrategy):
temperature = 0.0
top_p = 1.0
elif isinstance(sampling_params.strategy, TopPSamplingStrategy):
temperature = sampling_params.strategy.temperature
top_p = sampling_params.strategy.top_p
else:
raise ValueError(f"Unsupported sampling strategy {sampling_params.strategy}")
return temperature, top_p

View file

@ -36,6 +36,7 @@ from llama_stack.apis.inference import (
from llama_stack.apis.models import Model
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
@ -126,21 +127,12 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
if sampling_params is None:
return VLLMSamplingParams(max_tokens=self.config.max_tokens)
# TODO convert what I saw in my first test ... but surely there's more to do here
kwargs = {
"temperature": sampling_params.temperature,
"max_tokens": self.config.max_tokens,
}
if sampling_params.top_k:
kwargs["top_k"] = sampling_params.top_k
if sampling_params.top_p:
kwargs["top_p"] = sampling_params.top_p
if sampling_params.max_tokens:
kwargs["max_tokens"] = sampling_params.max_tokens
if sampling_params.repetition_penalty > 0:
kwargs["repetition_penalty"] = sampling_params.repetition_penalty
options = get_sampling_options(sampling_params)
if "repeat_penalty" in options:
options["repetition_penalty"] = options["repeat_penalty"]
del options["repeat_penalty"]
return VLLMSamplingParams(**kwargs)
return VLLMSamplingParams(**options)
async def unregister_model(self, model_id: str) -> None:
pass

View file

@ -34,6 +34,7 @@ from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_strategy_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
@ -166,16 +167,13 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
) -> Dict:
bedrock_model = request.model
inference_config = {}
param_mapping = {
"max_tokens": "max_gen_len",
"temperature": "temperature",
"top_p": "top_p",
}
sampling_params = request.sampling_params
options = get_sampling_strategy_options(sampling_params)
for k, v in param_mapping.items():
if getattr(request.sampling_params, k):
inference_config[v] = getattr(request.sampling_params, k)
if sampling_params.max_tokens:
options["max_gen_len"] = sampling_params.max_tokens
if sampling_params.repetition_penalty > 0:
options["repetition_penalty"] = sampling_params.repetition_penalty
prompt = await chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
@ -185,7 +183,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
"body": json.dumps(
{
"prompt": prompt,
**inference_config,
**options,
}
),
}

View file

@ -9,6 +9,7 @@ from typing import AsyncGenerator, List, Optional, Union
from cerebras.cloud.sdk import AsyncCerebras
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import TopKSamplingStrategy
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.common.content_types import InterleavedContent
@ -172,7 +173,9 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def _get_params(
self, request: Union[ChatCompletionRequest, CompletionRequest]
) -> dict:
if request.sampling_params and request.sampling_params.top_k:
if request.sampling_params and isinstance(
request.sampling_params.strategy, TopKSamplingStrategy
):
raise ValueError("`top_k` not supported by Cerebras")
prompt = ""

View file

@ -48,6 +48,9 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_strategy_options,
)
def convert_chat_completion_request(
@ -77,6 +80,7 @@ def convert_chat_completion_request(
if request.tool_prompt_format != ToolPromptFormat.json:
warnings.warn("tool_prompt_format is not used by Groq. Ignoring.")
sampling_options = get_sampling_strategy_options(request.sampling_params)
return CompletionCreateParams(
model=request.model,
messages=[_convert_message(message) for message in request.messages],
@ -84,8 +88,8 @@ def convert_chat_completion_request(
frequency_penalty=None,
stream=request.stream,
max_tokens=request.sampling_params.max_tokens or None,
temperature=request.sampling_params.temperature,
top_p=request.sampling_params.top_p,
temperature=sampling_options.get("temperature", 1.0),
top_p=sampling_options.get("top_p", 1.0),
tools=[_convert_groq_tool_definition(tool) for tool in request.tools or []],
tool_choice=request.tool_choice.value if request.tool_choice else None,
)

View file

@ -263,19 +263,18 @@ def convert_chat_completion_request(
if request.sampling_params.max_tokens:
payload.update(max_tokens=request.sampling_params.max_tokens)
if request.sampling_params.strategy == "top_p":
strategy = request.sampling_params.strategy
if isinstance(strategy, TopPSamplingStrategy):
nvext.update(top_k=-1)
payload.update(top_p=request.sampling_params.top_p)
elif request.sampling_params.strategy == "top_k":
if (
request.sampling_params.top_k != -1
and request.sampling_params.top_k < 1
):
payload.update(top_p=strategy.top_p)
payload.update(temperature=strategy.temperature)
elif isinstance(strategy, TopKSamplingStrategy):
if strategy.top_k != -1 and strategy.top_k < 1:
warnings.warn("top_k must be -1 or >= 1")
nvext.update(top_k=request.sampling_params.top_k)
elif request.sampling_params.strategy == "greedy":
nvext.update(top_k=strategy.top_k)
elif strategy.strategy == "greedy":
nvext.update(top_k=-1)
payload.update(temperature=request.sampling_params.temperature)
payload.update(temperature=strategy.temperature)
return payload

View file

@ -22,7 +22,12 @@ from llama_stack.apis.agents import (
ToolExecutionStep,
Turn,
)
from llama_stack.apis.inference import CompletionMessage, SamplingParams, UserMessage
from llama_stack.apis.inference import (
CompletionMessage,
SamplingParams,
TopPSamplingStrategy,
UserMessage,
)
from llama_stack.apis.safety import ViolationLevel
from llama_stack.providers.datatypes import Api
@ -42,7 +47,9 @@ def common_params(inference_model):
model=inference_model,
instructions="You are a helpful assistant.",
enable_session_persistence=True,
sampling_params=SamplingParams(temperature=0.7, top_p=0.95),
sampling_params=SamplingParams(
strategy=TopPSamplingStrategy(temperature=0.7, top_p=0.95)
),
input_shields=[],
output_shields=[],
toolgroups=[],

View file

@ -21,6 +21,7 @@ from groq.types.chat.chat_completion_message_tool_call import (
Function,
)
from groq.types.shared.function_definition import FunctionDefinition
from llama_models.datatypes import GreedySamplingStrategy, TopPSamplingStrategy
from llama_models.llama3.api.datatypes import ToolParamDefinition
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -152,21 +153,30 @@ class TestConvertChatCompletionRequest:
assert converted["max_tokens"] == 100
def test_includes_temperature(self):
def _dummy_chat_completion_request(self):
return ChatCompletionRequest(
model="Llama-3.2-3B",
messages=[UserMessage(content="Hello World")],
)
def test_includes_stratgy(self):
request = self._dummy_chat_completion_request()
request.sampling_params.temperature = 0.5
request.sampling_params.strategy = TopPSamplingStrategy(
temperature=0.5, top_p=0.95
)
converted = convert_chat_completion_request(request)
assert converted["temperature"] == 0.5
assert converted["top_p"] == 0.95
def test_includes_top_p(self):
def test_includes_greedy_strategy(self):
request = self._dummy_chat_completion_request()
request.sampling_params.top_p = 0.95
request.sampling_params.strategy = GreedySamplingStrategy()
converted = convert_chat_completion_request(request)
assert converted["top_p"] == 0.95
assert converted["temperature"] == 0.0
def test_includes_tool_choice(self):
request = self._dummy_chat_completion_request()

View file

@ -8,7 +8,13 @@ from typing import AsyncGenerator, List, Optional
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import SamplingParams, StopReason
from llama_models.llama3.api.datatypes import (
GreedySamplingStrategy,
SamplingParams,
StopReason,
TopKSamplingStrategy,
TopPSamplingStrategy,
)
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
@ -49,12 +55,26 @@ class OpenAICompatCompletionResponse(BaseModel):
choices: List[OpenAICompatCompletionChoice]
def get_sampling_strategy_options(params: SamplingParams) -> dict:
options = {}
if isinstance(params.strategy, GreedySamplingStrategy):
options["temperature"] = 0.0
elif isinstance(params.strategy, TopPSamplingStrategy):
options["temperature"] = params.strategy.temperature
options["top_p"] = params.strategy.top_p
elif isinstance(params.strategy, TopKSamplingStrategy):
options["top_k"] = params.strategy.top_k
else:
raise ValueError(f"Unsupported sampling strategy: {params.strategy}")
return options
def get_sampling_options(params: SamplingParams) -> dict:
options = {}
if params:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(params, attr):
options[attr] = getattr(params, attr)
options.update(get_sampling_strategy_options(params))
options["max_tokens"] = params.max_tokens
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
options["repeat_penalty"] = params.repetition_penalty