Merge branch 'main' into models_api_2

This commit is contained in:
Xi Yan 2024-09-18 22:36:48 -07:00 committed by GitHub
commit df33e6fbec
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
30 changed files with 9689 additions and 113 deletions

View file

@ -13,12 +13,12 @@ from typing import Any, Dict, List, Optional
import fire
import httpx
from llama_stack.distribution.datatypes import RemoteProviderConfig
from termcolor import cprint
from .memory import * # noqa: F403
from .common.file_utils import data_url_from_file
from llama_stack.distribution.datatypes import RemoteProviderConfig
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.utils.memory.file_utils import data_url_from_file
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Memory:

View file

@ -212,7 +212,7 @@ class StackBuild(Subcommand):
providers_for_api = all_providers[api]
api_provider = prompt(
"> Enter the API provider for the {} API: (default=meta-reference): ".format(
"> Enter provider for the {} API: (default=meta-reference): ".format(
api.value
),
validator=Validator.from_callable(

View file

@ -53,46 +53,61 @@ class StackConfigure(Subcommand):
from termcolor import cprint
docker_image = None
build_config_file = Path(args.config)
if build_config_file.exists():
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
self._configure_llama_distribution(build_config, args.output_dir)
return
# if we get here, we need to try to find the conda build config file
cprint(
f"Could not find {build_config_file}. Trying conda build name instead...",
color="green",
)
conda_dir = Path(os.getenv("CONDA_PREFIX")).parent / f"llamastack-{args.config}"
build_config_file = Path(conda_dir) / f"{args.config}-build.yaml"
if not build_config_file.exists():
cprint(
f"Could not find {build_config_file}. Trying docker image name instead...",
color="green",
)
docker_image = args.config
if build_config_file.exists():
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
builds_dir = BUILDS_BASE_DIR / ImageType.docker.value
if args.output_dir:
builds_dir = Path(output_dir)
os.makedirs(builds_dir, exist_ok=True)
self._configure_llama_distribution(build_config, args.output_dir)
return
script = pkg_resources.resource_filename(
"llama_stack", "distribution/configure_container.sh"
)
script_args = [script, docker_image, str(builds_dir)]
# if we get here, we need to try to find the docker image
cprint(
f"Could not find {build_config_file}. Trying docker image name instead...",
color="green",
)
docker_image = args.config
builds_dir = BUILDS_BASE_DIR / ImageType.docker.value
if args.output_dir:
builds_dir = Path(output_dir)
os.makedirs(builds_dir, exist_ok=True)
return_code = run_with_pty(script_args)
script = pkg_resources.resource_filename(
"llama_stack", "distribution/configure_container.sh"
)
script_args = [script, docker_image, str(builds_dir)]
# we have regenerated the build config file with script, now check if it exists
if return_code != 0:
self.parser.error(
f"Can not find {build_config_file}. Please run llama stack build first or check if docker image exists"
)
return_code = run_with_pty(script_args)
build_name = docker_image.removeprefix("llamastack-")
saved_file = str(builds_dir / f"{build_name}-run.yaml")
cprint(
f"YAML configuration has been written to {saved_file}. You can now run `llama stack run {saved_file}`",
color="green",
# we have regenerated the build config file with script, now check if it exists
if return_code != 0:
self.parser.error(
f"Failed to configure container {docker_image} with return code {return_code}. Please run `llama stack build first`. "
)
return
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
self._configure_llama_distribution(build_config, args.output_dir)
build_name = docker_image.removeprefix("llamastack-")
saved_file = str(builds_dir / f"{build_name}-run.yaml")
cprint(
f"YAML configuration has been written to {saved_file}. You can now run `llama stack run {saved_file}`",
color="green",
)
return
def _configure_llama_distribution(
self,

View file

@ -30,12 +30,8 @@ def make_routing_entry_type(config_class: Any):
def configure_api_providers(
config: StackRunConfig, spec: DistributionSpec
) -> StackRunConfig:
cprint("Configuring APIs to serve...", "white", attrs=["bold"])
print("Enter comma-separated list of APIs to serve:")
apis = config.apis_to_serve or list(spec.providers.keys())
config.apis_to_serve = [a for a in apis if a != "telemetry"]
print("")
apis = [v.value for v in stack_apis()]
all_providers = api_providers()

View file

@ -7,15 +7,14 @@
from typing import List
from llama_models.llama3.api.datatypes import Message, Role, UserMessage
from termcolor import cprint
from llama_stack.apis.safety import (
OnViolationAction,
RunShieldRequest,
Safety,
ShieldDefinition,
ShieldResponse,
)
from termcolor import cprint
class SafetyException(Exception): # noqa: N818
@ -45,10 +44,8 @@ class ShieldRunnerMixin:
messages[0] = UserMessage(content=messages[0].content)
res = await self.safety_api.run_shields(
RunShieldRequest(
messages=messages,
shields=shields,
)
messages=messages,
shields=shields,
)
results = res.responses

View file

@ -11,10 +11,10 @@ from llama_models.datatypes import ModelFamily
from llama_models.schema_utils import json_schema_type
from llama_models.sku_list import all_registered_models, resolve_model
from llama_stack.apis.inference import QuantizationConfig
from pydantic import BaseModel, Field, field_validator
from llama_stack.apis.inference import QuantizationConfig
@json_schema_type
class MetaReferenceImplConfig(BaseModel):
@ -24,7 +24,7 @@ class MetaReferenceImplConfig(BaseModel):
)
quantization: Optional[QuantizationConfig] = None
torch_seed: Optional[int] = None
max_seq_len: int
max_seq_len: int = 4096
max_batch_size: int = 1
@field_validator("model")