Merge branch 'main' into add-nim-completion-api

This commit is contained in:
Matthew Farrellee 2024-12-11 13:07:23 -05:00
commit df3c239573
199 changed files with 7739 additions and 814 deletions

View file

@ -81,6 +81,18 @@ class TestDatasetIO:
assert len(response) == 1
assert response[0].identifier == "test_dataset"
with pytest.raises(Exception) as exc_info:
# unregister a dataset that does not exist
await datasets_impl.unregister_dataset("test_dataset2")
await datasets_impl.unregister_dataset("test_dataset")
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 0
with pytest.raises(Exception) as exc_info:
await datasets_impl.unregister_dataset("test_dataset")
@pytest.mark.asyncio
async def test_get_rows_paginated(self, datasetio_stack):
datasetio_impl, datasets_impl = datasetio_stack

View file

@ -6,10 +6,14 @@
import pytest
from ..agents.fixtures import AGENTS_FIXTURES
from ..conftest import get_provider_fixture_overrides
from ..datasetio.fixtures import DATASETIO_FIXTURES
from ..inference.fixtures import INFERENCE_FIXTURES
from ..memory.fixtures import MEMORY_FIXTURES
from ..safety.fixtures import SAFETY_FIXTURES
from ..scoring.fixtures import SCORING_FIXTURES
from .fixtures import EVAL_FIXTURES
@ -20,6 +24,9 @@ DEFAULT_PROVIDER_COMBINATIONS = [
"scoring": "basic",
"datasetio": "localfs",
"inference": "fireworks",
"agents": "meta_reference",
"safety": "llama_guard",
"memory": "faiss",
},
id="meta_reference_eval_fireworks_inference",
marks=pytest.mark.meta_reference_eval_fireworks_inference,
@ -30,6 +37,9 @@ DEFAULT_PROVIDER_COMBINATIONS = [
"scoring": "basic",
"datasetio": "localfs",
"inference": "together",
"agents": "meta_reference",
"safety": "llama_guard",
"memory": "faiss",
},
id="meta_reference_eval_together_inference",
marks=pytest.mark.meta_reference_eval_together_inference,
@ -40,6 +50,9 @@ DEFAULT_PROVIDER_COMBINATIONS = [
"scoring": "basic",
"datasetio": "huggingface",
"inference": "together",
"agents": "meta_reference",
"safety": "llama_guard",
"memory": "faiss",
},
id="meta_reference_eval_together_inference_huggingface_datasetio",
marks=pytest.mark.meta_reference_eval_together_inference_huggingface_datasetio,
@ -75,6 +88,9 @@ def pytest_generate_tests(metafunc):
"scoring": SCORING_FIXTURES,
"datasetio": DATASETIO_FIXTURES,
"inference": INFERENCE_FIXTURES,
"agents": AGENTS_FIXTURES,
"safety": SAFETY_FIXTURES,
"memory": MEMORY_FIXTURES,
}
combinations = (
get_provider_fixture_overrides(metafunc.config, available_fixtures)

View file

@ -40,14 +40,30 @@ async def eval_stack(request):
providers = {}
provider_data = {}
for key in ["datasetio", "eval", "scoring", "inference"]:
for key in [
"datasetio",
"eval",
"scoring",
"inference",
"agents",
"safety",
"memory",
]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
test_stack = await construct_stack_for_test(
[Api.eval, Api.datasetio, Api.inference, Api.scoring],
[
Api.eval,
Api.datasetio,
Api.inference,
Api.scoring,
Api.agents,
Api.safety,
Api.memory,
],
providers,
provider_data,
)

View file

@ -17,6 +17,7 @@ from llama_stack.providers.inline.inference.meta_reference import (
)
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
@ -64,6 +65,21 @@ def inference_meta_reference(inference_model) -> ProviderFixture:
)
@pytest.fixture(scope="session")
def inference_cerebras() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="cerebras",
provider_type="remote::cerebras",
config=CerebrasImplConfig(
api_key=get_env_or_fail("CEREBRAS_API_KEY"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_ollama(inference_model) -> ProviderFixture:
inference_model = (
@ -206,6 +222,7 @@ INFERENCE_FIXTURES = [
"vllm_remote",
"remote",
"bedrock",
"cerebras",
"nvidia",
"tgi",
]

View file

@ -95,6 +95,7 @@ class TestInference:
"remote::together",
"remote::fireworks",
"remote::nvidia",
"remote::cerebras",
):
pytest.skip("Other inference providers don't support completion() yet")
@ -139,6 +140,8 @@ class TestInference:
"remote::together",
"remote::fireworks",
"remote::nvidia",
"remote::vllm",
"remote::cerebras",
):
pytest.skip(
"Other inference providers don't support structured output in completions yet"
@ -198,6 +201,7 @@ class TestInference:
"remote::fireworks",
"remote::tgi",
"remote::together",
"remote::vllm",
"remote::nvidia",
):
pytest.skip("Other inference providers don't support structured output yet")
@ -211,7 +215,15 @@ class TestInference:
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=[
SystemMessage(content="You are a helpful assistant."),
# we include context about Michael Jordan in the prompt so that the test is
# focused on the funtionality of the model and not on the information embedded
# in the model. Llama 3.2 3B Instruct tends to think MJ played for 14 seasons.
SystemMessage(
content=(
"You are a helpful assistant.\n\n"
"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons."
)
),
UserMessage(content="Please give me information about Michael Jordan."),
],
stream=False,

Binary file not shown.

View file

@ -0,0 +1,76 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import mimetypes
import os
from pathlib import Path
import pytest
from llama_stack.apis.memory.memory import MemoryBankDocument, URL
from llama_stack.providers.utils.memory.vector_store import content_from_doc
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"
def read_file(file_path: str) -> bytes:
with open(file_path, "rb") as file:
return file.read()
def data_url_from_file(file_path: str) -> str:
with open(file_path, "rb") as file:
file_content = file.read()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type, _ = mimetypes.guess_type(file_path)
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url
class TestVectorStore:
@pytest.mark.asyncio
async def test_returns_content_from_pdf_data_uri(self):
data_uri = data_url_from_file(DUMMY_PDF_PATH)
doc = MemoryBankDocument(
document_id="dummy",
content=data_uri,
mime_type="application/pdf",
metadata={},
)
content = await content_from_doc(doc)
assert content == "Dummy PDF file"
@pytest.mark.asyncio
async def test_downloads_pdf_and_returns_content(self):
# Using GitHub to host the PDF file
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
doc = MemoryBankDocument(
document_id="dummy",
content=url,
mime_type="application/pdf",
metadata={},
)
content = await content_from_doc(doc)
assert content == "Dummy PDF file"
@pytest.mark.asyncio
async def test_downloads_pdf_and_returns_content_with_url_object(self):
# Using GitHub to host the PDF file
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
doc = MemoryBankDocument(
document_id="dummy",
content=URL(
uri=url,
),
mime_type="application/pdf",
metadata={},
)
content = await content_from_doc(doc)
assert content == "Dummy PDF file"

View file

@ -10,9 +10,10 @@ import pytest_asyncio
from llama_stack.apis.models import ModelInput
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.scoring.braintrust import BraintrustScoringConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test
from ..conftest import ProviderFixture, remote_stack_fixture
from ..env import get_env_or_fail
@pytest.fixture(scope="session")
@ -40,7 +41,9 @@ def scoring_braintrust() -> ProviderFixture:
Provider(
provider_id="braintrust",
provider_type="inline::braintrust",
config={},
config=BraintrustScoringConfig(
openai_api_key=get_env_or_fail("OPENAI_API_KEY"),
).model_dump(),
)
],
)

View file

@ -7,7 +7,12 @@
import pytest
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
BasicScoringFnParams,
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
)
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
@ -18,6 +23,11 @@ from llama_stack.providers.tests.datasetio.test_datasetio import register_datase
# -v -s --tb=short --disable-warnings
@pytest.fixture
def sample_judge_prompt_template():
return "Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9."
class TestScoring:
@pytest.mark.asyncio
async def test_scoring_functions_list(self, scoring_stack):
@ -92,7 +102,9 @@ class TestScoring:
assert len(response.results[x].score_rows) == 5
@pytest.mark.asyncio
async def test_scoring_score_with_params(self, scoring_stack):
async def test_scoring_score_with_params_llm_as_judge(
self, scoring_stack, sample_judge_prompt_template
):
(
scoring_impl,
scoring_functions_impl,
@ -129,10 +141,11 @@ class TestScoring:
assert len(rows.rows) == 3
scoring_functions = {
"llm-as-judge::llm_as_judge_base": LLMAsJudgeScoringFnParams(
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=[AggregationFunctionType.categorical_count],
)
}
@ -154,3 +167,67 @@ class TestScoring:
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == 5
@pytest.mark.asyncio
async def test_scoring_score_with_aggregation_functions(
self, scoring_stack, sample_judge_prompt_template
):
(
scoring_impl,
scoring_functions_impl,
datasetio_impl,
datasets_impl,
models_impl,
) = (
scoring_stack[Api.scoring],
scoring_stack[Api.scoring_functions],
scoring_stack[Api.datasetio],
scoring_stack[Api.datasets],
scoring_stack[Api.models],
)
await register_dataset(datasets_impl)
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
scoring_functions = {}
aggr_fns = [
AggregationFunctionType.accuracy,
AggregationFunctionType.median,
AggregationFunctionType.categorical_count,
AggregationFunctionType.average,
]
for x in scoring_fns_list:
if x.provider_id == "llm-as-judge":
aggr_fns = [AggregationFunctionType.categorical_count]
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=aggr_fns,
)
elif x.provider_id == "basic":
if "regex_parser" in x.identifier:
scoring_functions[x.identifier] = RegexParserScoringFnParams(
aggregation_functions=aggr_fns,
)
else:
scoring_functions[x.identifier] = BasicScoringFnParams(
aggregation_functions=aggr_fns,
)
else:
scoring_functions[x.identifier] = None
response = await scoring_impl.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
assert len(response.results[x].aggregated_results) == len(aggr_fns)